

Welcome to Thumbor’s documentation!

[image: _images/logo-thumbor.png]

Whats Thumbor?

Thumbor is a smart imaging service. It enables on-demand crop, resizing
and flipping of images.

It features a VERY smart detection of important points in the image for
better cropping and resizing, using state-of-the-art face and feature
detection algorithms (more on that in Detection Algorithms).

Using thumbor is very easy (after it is running). All you have to do is
access it using an URL for an image, like this:

http://thumbor-server/unsafe/300x200/smart/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

That URL would show an image of the Big Brother Brasil participants in
300x200 using smart crop. There are several other options to the image
URL configuration. You can check them in the Usage
page. For more details on the /unsafe part of the URL, check the
Security page.

The safe url for the above URL would look like (check Security for
more details):

http://thumbor-server/K97LekICOXT9MbO3X1u8BBkrjbu5/300x200/smart/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Warning

Release 7.0.0 introduces a major breaking change due to the migration to python 3
and the modernization of our codebase. Please read the
release notes [https://github.com/thumbor/thumbor/releases/tag/7.0.0]
for details on how to upgrade.

Contents

	Installing
	Stable

	Ubuntu/Debian using aptitude (apt-get)

	From the source of a stable release

	From the latest version of the source

	Getting Started
	Problems installing thumbor locally

	Changing its size

	Flipping the image

	Filters

	What now?

	Usage
	Image Endpoint

	Metadata Endpoint

	Imaging
	Crop and Resize Algorithms

	Filters

	Detectors

	Image loader

	Image storage

	Result Storage

	Optimizers

	Customizing Thumbor
	Custom Storages

	Custom Image Loaders

	Custom Result Storages

	Custom Filters

	Custom Engines

	Custom detection

	Custom Image Optimizers

	Custom Error Handlers

	Custom Handler Lists

	Plugins

	Libraries

	Administration
	Configuration

	Automated Error Handling

	Hosting

	Logging

	Running thumbor server

	Image Metadata

	Security

	Upload
	How to upload Images

	Posting, Putting and Deleting

	Creating my own Storage

	Contributors & Users
	The team

	Whos using it

	Hacking on Thumbor

	Licensing

Indices and tables

	Index

	Module Index

	Search Page

Installing

Installing thumbor is really easy because it supports the distutils form
of packaging (http://docs.python.org/distutils/setupscript.html).

Warning

Thumbor v7.0.0 and later only supports python 3.7+.
This change was important to improve our codebase and ensure
it’s easier to change in future releases.
More breaking changes will come, but we do not anticipate any
as big as this one. Please refer to
release notes [https://github.com/thumbor/thumbor/releases]
for details on how to upgrade.

Stable

The latest stable version of thumbor is always published in the Python
Package Index (http://pypi.python.org/pypi), so it can be easily
installed using pip install thumbor or easy_install thumbor.

Ubuntu/Debian using aptitude (apt-get)

There’s now an officially supported ppa for thumbor if you are using
aptitude.

To install using aptitude, add the following lines to your sources list:

deb http://ppa.launchpad.net/thumbor/ppa/ubuntu <your release> main
deb-src http://ppa.launchpad.net/thumbor/ppa/ubuntu <your release> main

If you are using ubuntu 12.10 (quantal), it would be:

deb http://ppa.launchpad.net/thumbor/ppa/ubuntu quantal main
deb-src http://ppa.launchpad.net/thumbor/ppa/ubuntu quantal main

Or you can add the repository to you sources list via the command line:

sudo add-apt-repository ppa:thumbor/ppa

After that just update your sources:

sudo aptitude update

And install using plain old aptitude install:

sudo aptitude install thumbor

A service will be created for you that gets started when the machine
starts up (using upstart).

By default thumbor will be disabled. Open /etc/default/thumbor and
change (or remove) the flag enabled to 1 or use the command
sudo service thumbor start force=1 (force_start=1 for
thumbor<3.7.0) to temporarily start thumbor. You can also override other
defaults like the location of the configuration file by editing
/etc/default/thumbor.

The configuration for thumbor will be at /etc/thumbor.conf and the
security key at /etc/thumbor.key. There will be one instance running
at http://localhost:8888.

If you want to run many instances of thumbor you’ll need to run it in
many ports. That means you’ll need to use some form of load balancing
(NGINX, Apache, Varnish, Haproxy, etc).

Running many instances of thumbor is as simple as editing
/etc/default/thumbor and changing the port key to as many ports
as you want, comma-separated: port=8888,8889,8890 (for
thumbor>3.7.0).

If you need more detail head to
https://launchpad.net/~thumbor/+archive/ppa.

From the source of a stable release

Download the latest stable source-code version here on GitHub or PyPI
and decompress it.

In the path you decompressed, execute pip install . or
python setup.py install.

From the latest version of the source

Clone thumbor’s repository and install it using one of the following:

pip install git+git://github.com/thumbor/thumbor.git

or

git clone git://github.com/thumbor/thumbor.git

cd thumbor

python setup.py install

Getting Started

If you just want to give thumbor a try, it is pretty easy to get
started. It won’t take more than a minute.

Just install it with pip install thumbor and start the process with
thumbor in a console. That’s all you need to start transforming images.

The image we’ll be using in most of our examples is a Creative Commons licensed image by Snapwire [https://www.pexels.com/@snapwire]:

https://github.com/thumbor/thumbor/raw/master/example.jpg

[image: _images/example.jpg]
If you want to use a different image, go ahead. Any image will work for the remainder of the docs.

Note

Thumbor only understands properly encoded URIs. In order to use the URI above
(or any other for that matter), we first need to encode it. This can be easily
achieved by going to any modern browser’s developer console and typing:

window.encodeURIComponent(
 "https://github.com/thumbor/thumbor/raw/master/example.jpg"
)

And the output will be:

https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

That’s the URL we’ll be using in our examples!

Problems installing thumbor locally

No worries! If you have a docker host accessible, just run:

$ docker run -p 8888:80 minimalcompact/thumbor

After downloading the image and running it, thumbor will be accessible at http://localhost:8888/.

For more information on minimalcompact/thumbor, visit their github page [https://github.com/MinimalCompact/thumbor].

Changing its size

Go to your browser and enter in the url:

http://localhost:8888/unsafe/300x200/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

You should see the image with \(300px\) of width and \(200px\) of
height. Just play with it in the url to see the image change.

If you just want it to be proportional to the width, enter a height of
0, like:

http://localhost:8888/unsafe/300x0/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Flipping the image

How about seeing it backwards? Or upside down?

Go to your browser and enter in the url:

http://localhost:8888/unsafe/-0x-0/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

You should see the waterfall backwards and upside down.

Filters

What if I want to change contrast or brightness?

Go to your browser and enter in the url:

http://localhost:8888/unsafe/filters:brightness(10):contrast(30)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

There are many more filters to explore. Check the Filters page for more details.

What now?

Ok, now that you know how amazing thumbor is, there’s actually A LOT
more to it. Go check the rest of the docs to learn how to get even more
from your new imaging server.

Usage

Using thumbor is really straightforward. thumbor offers one endpoint for
retrieving the image and a very similar endpoint to retrieve metadata.

Image Endpoint

/hmac/trim/AxB:CxD/(adaptive-)(full-)fit-in/-Ex-F/HALIGN/VALIGN/smart/filters:FILTERNAME(ARGUMENT):FILTERNAME(ARGUMENT)/*IMAGE-URI*

	hmac is the signature that ensures Security ;

	trim removes surrounding space in images using top-left pixel color
unless specified otherwise;

	AxB:CxD means manually crop the image at left-top point AxB and
right-bottom point CxD;

	fit-in means that the generated image should not be auto-cropped and
otherwise just fit in an imaginary box specified by ExF. If a full
fit-in is specified, then the largest size is used for cropping (width
instead of height, or the other way around). If adaptive fit-in is
specified, it inverts requested width and height if it would get a better
image definition;

	-Ex-F means resize the image to be ExF of width per height size. The
minus signs mean flip horizontally and vertically;

	HALIGN is horizontal alignment of crop;

	VALIGN is vertical alignment of crop;

	smart means using smart detection of focal points;

	filters can be applied sequentially to the image before returning;

	IMAGE-URI is the encoded URI for the image you want resized.

Trim

Removing surrounding space in images can be done using the trim option.

Unless specified trim assumes the top-left pixel color and no tolerance
(more on tolerance below).

To use it, just add a /trim part to your URL.

If you need to specify the orientation from where to get the pixel
color, just use /trim:top-left for the top-left pixel color or
/trim:bottom-right for the bottom-right pixel color.

Trim also supports color tolerance. The euclidean distance between the
colors of the reference pixel and the surrounding pixels is used. If the
distance is within the tolerance they’ll get trimmed. For a RGB image
the tolerance would be within the range 0-442.

Manual Crop

The manual crop is entirely optional. This is very useful for
applications that provide custom real-time cropping capabilities to
their users.

The manual crop part of the url takes two points as arguments, separated
by a colon. The first point is the left-top point of the cropping
rectangle. The second point is the right-bottom point.

This crop is performed before the rest of the operations, so it can be
used as a prepare step before resizing and smart-cropping. It is
very useful when you just need to get that celebrity face on a big
picture full of people, as an example.

Fit in

The fit-in argument specifies that the image should not be auto-cropped
and auto-resized to be EXACTLY the specified size, and should be fit in
an imaginary box of “E” width and “F” height, instead.

Consider an image of \(800px\) x \(600px\), and a fit of \(300px\) x \(200px\). This is
how thumbor would resize it:

[image: An image in a vertical fit-in]
Consider an image of \(400px\) x \(600px\), and a fit of \(300px\) x \(200px\). This is
how thumbor would resize it:

[image: An image in a horizontal fit-in]
This is very useful when you need to fit an image somewhere, but you
have no idea about the original image dimensions.

If a full fit-in is used, instead of using the largest size for cropping
it uses the smallest one, so in the above scenarios:

For the image of \(800px\) x \(600px\), with a full fit-in of \(300px\) x \(200px\), we
would get an image of \(300px\) x \(225px\).

For the image of \(400px\) x \(600px\), with a full fit-in of \(300px\) x \(200px\), we
would get an image of \(300px\) x \(450px\).

Image Size

The image size argument specifies the size of the image that will be
returned by the service. Thumbor uses smart Crop and Resize Algorithms

If you omit one of the dimensions or use zero as a value (as in \(300x\),
\(300x0\), \(x200\), \(0x200\), and so on), Thumbor will determine that dimension as
to be proportional to the original image. Say you have an \(800x600\) image
and ask for a \(400x0\) image. Thumbor will infer that since \(400\) is half of
\(800\), then the height you are looking for is half of \(600\), which is \(300px\).

If you use \(0x0\), Thumbor will use the original size of the image and thus
won’t do any cropping or resizing.

If you specify one of the dimensions as the string “orig” (as in
\(origx100\), \(100xorig\), \(origxorig\)), thumbor will interpret that you want
that dimension to remain the same as in the original image. Consider an
image of \(800x600\). If you ask for a \(300xorig\) version of it, thumbor will
interpret that you want a \(300x600\) image. If you instead ask for a
\(origx300\) version, thumbor will serve you an \(800x300\) image.

If you use \(origxorig\), Thumbor will use the original size of the image
and thus won’t do any cropping or resizing.

The default value (in case it is omitted) for this option is to use
proportional size (0) to the original image.

Horizontal Align

As was explained above, unless the image is of the same proportion as
the desired size, some cropping will need to occur.

The horizontal align option controls where the cropping will occur if
some width needs to be trimmed (unless some feature detection occurs -
more on that later).

So, if we need to trim \(300px\) of the width and the current horizontal
align is “left”, then we’ll trim 0px of the left of the image and \(300px\)
of the right side of the image.

The possible values for this option are:

	left - only trims the right side;

	center - trims half of the width from the left side and half from the
right side;

	right - only trims the left side.

It is important to notice that this option is useless in case of the
image being vertically trimmed, since Thumbor’s cropping algorithm only
crops in one direction.

The default value (in case it is omitted) for this option is
“center”.

Vertical Align

The vertical align option is analogous to the horizontal one, except
that it controls height trimming.

So, if we need to trim \(300px\) of the height and the current vertical
align is “top”, then we’ll trim \(0px\) of the top of the image and \(300px\) of
the bottom side of the image.

The possible values for this option are:

	top - only trims the bottom;

	middle - trims half of the height from the top and half from the
bottom;

	bottom - only trims the top.

It is important to notice that this option is useless in case of the
image being horizontally trimmed, since Thumbor’s cropping algorithm
only crops in one direction.

The default value (in case it is omitted) for this option is
“middle”.

Smart Cropping

Thumbor uses some very advanced techniques for obtaining important
points of the image (referred to as Focal Points in the rest of this
documentation).

Even though Thumbor comes with facial recognition of Focal Points as
well as feature recognition, you can easily implement your own detectors
as you’ll see further in the docs.

There’s not much to this option, since we’ll cover it in the Detection Algorithms
page. If you use it in the url, smart cropping will be
performed and will override both horizontal and vertical alignments if
it finds any Focal Points.

The default value (in case it is omitted) for this option is not to
use smart cropping.

Filters

Thumbor allows for usage of a filter pipeline that will be applied
sequentially to the image. Filters are covered in the
Filters page if you want to know more.

To use filters add a filters: part in your URL. Filters are like
function calls filter_name(argument, argument2, etc) and are
separated using the : character, like filters:filter_name():other_filter().

Image URI

This is the image URI. The format of this option depends heavily on the
image loader you are using. Thumbor comes pre-packaged with an HTTP
loader and a Filesystem loader.

If you use the HTTP loader, this option corresponds to the image
complete URI.

If you use the Filesystem loader, this option corresponds to the path of
the image from the images root.

You can learn more about the loaders in the Image loader page.

Metadata Endpoint

The metadata endpoint has ALL the options that the image one has,
but instead of actually performing the operations in the image, it just
simulates the operations.

Since it has the same options as the other endpoint, we won’t repeat all
of them. To use the metadata endpoint, just add a /meta in the
beginning of the url.

Say we have the following crop URL:

http://my-server.thumbor.org/unsafe/-300x-200/left/top/smart/path/to/my/nice/image.jpg

If we want the metadata on what thumbor would do, just change the url to
be

http://my-server.thumbor.org/unsafe/meta/-300x-200/left/top/smart/path/to/my/nice/image.jpg

After the processing is finished, thumbor will return a json object
containing metadata on the image and the operations that would have been
performed.

The json looks like this:

{
 thumbor: {
 source: {
 url: "path/to/my/nice/image.jpg",
 width: 800,
 height: 600
 },
 operations: [
 {
 type: "crop",
 left: 10,
 top: 10,
 right: 300,
 bottom: 200
 },
 {
 type: "resize",
 width: 300,
 height: 200
 },
 { type: "flip_horizontally" },
 { type: "flip_vertically" }
]
 }
}

Imaging

	Crop and Resize Algorithms
	Cropping the image

	Resizing the Image

	Flipping the Image

	Filters
	How Filters Work

	Available Filters

	Detectors
	Enabling detectors

	Detection Algorithms

	Available detectors

	Lazy Detection

	Image loader
	Pre-packaged loaders

	Image storage
	Pre-Packaged Storages

	Result Storage
	Pre-packaged result storages

	Optimizers
	Built-in Optimizers

Crop and Resize Algorithms

Note

thumbor performs the least amount of cropping possible to resize your
image to the exact size you specified, without changing it’s aspect
ratio.

Cropping the image

Before resizing the image, thumbor crops it so it has the same aspect as
the desired dimensions. Let’s see an example to clarify this concept.

Consider an \(800x600\) (width x height, in pixels) image and say we want a
\(400x150\) thumbnail of it. The first thing thumbor needs to do is
calculate the proportion of the images:

\[width: 800 ÷ 600 = 1.333\]

\[height: 400 ÷ 150 = 2.666\]

Now that they don’t match, thumbor defines if the image needs horizontal
or vertical cropping. We never crop both ways, since it’s not needed.

So, in our example to get an image of the same proportion of the target
one, we need to get the picture height to be \(300px\) (using the proportional height):

\[h = 800 x 150 ÷ 400 = 300\]

Now all we need to do is cropping \(300px\) of the picture height. To
determine whether to crop from the top, bottom or both we use the focal
points or the horizontal alignment. If any focal points have been
specified we’ll use those to find the center of mass of the image (more
on that in Detection Algorithms). Otherwise we’ll use the horizontal
and vertical alignments.

[image: Default focal points if no other havebeen detected]
Let’s say that for this image no focal points were found, so we’ll use
the vertical alignment to crop the height. Since we specified middle
alignment for this example, we’ll crop off \(150px\) from the top and \(150px\)
from the bottom of the image, similarly to this image:

[image: The image after trimming the top and bottom]
Here’s an example of how thumbor would crop width or height using
centered alignment:

[image: How horizontal and vertical cropping affect the image]

Resizing the Image

Now that the image has the same proportion as the image we want, it’s
just a matter of resizing it to the desired dimensions.

Flipping the Image

If the desired dimensions feature negative numbers, thumbor will flip
them around that direction. This means that negative width specifies
horizontal flip, while negative height specifies vertical flip.

Filters

How Filters Work

Thumbor handles filters in a pipeline. This means that they
run sequentially in the order they are specified!
Given an original image with size \(60x40\) and the
following transformations:

http://localhost:8888/fit-in/100x100/filters:watermark(..):blur(..):fill(red,1):upscale()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

The resulting image will first check if it can fit into a \(100x100\). Since it does,
the filter pipeline will kick in and:

	add the watermark in the image;

	blur the whole image (including the watermark);

	Fill the outer parts of the image with red (so it will fit in \(100x100\));

	Then it will try to upscale. This will have no effect, since at this point the image is already \(100x100\).

Available Filters

	AutoJPG

	Background Color

	Blur

	Brightness

	Contrast

	Convolution

	Cover

	Equalize

	Extract focal points

	Filling

	Focal

	Format

	Grayscale

	Max bytes

	No upscale

	Noise

	Proportion

	Quality

	Red eye

	RGB

	Rotate

	Round corners

	Saturation

	Sharpen

	Stretch

	Strip EXIF

	Strip ICC

	Upscale

	Watermark

AutoJPG

Usage: autojpg(enabled)

Description

This filter overrides AUTO_PNG_TO_JPG config variable.

Arguments

	enabled - Passing True, which is the default value, you will override the AUTO_PNG_TO_JPG config variable and False to keep the default behavior of thus config.

Example

http://localhost:8888/unsafe/300x300/filters:autojpg()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Background Color

Usage: background_color(color)

Description

The background_color filter sets the background layer to the specified color.
This is specifically useful when converting transparent images (PNG) to JPEG

Arguments

	color - the color name (like in HTML) or hexadecimal rgb expression
without the “#” character (see
https://en.wikipedia.org/wiki/Web_colors for example). If color is
“auto”, a color will be smartly chosen (based on the image pixels) to
be the filling color.

Example

The original image is:

[image: Original picture]
http://localhost:8888/unsafe/fit-in/300x300/filters:background_color(blue)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fdocs%2Fimages%2Fdice_transparent_background.png

[image: Picture after the background_color(blue) filter]
http://localhost:8888/unsafe/fit-in/300x300/filters:background_color(f00)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fdocs%2Fimages%2Fdice_transparent_background.png

[image: Picture after the background_color(f00) filter]
http://localhost:8888/unsafe/fit-in/300x300/filters:background_color(add8e6)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fdocs%2Fimages%2Fdice_transparent_background.png

[image: Picture after the background_color(add8e6)]

Blur

Usage: blur(radius [, sigma])

Description

This filter applies a gaussian blur to the image.

Arguments

	radius - Radius used in the gaussian function to generate a matrix,
maximum value is 150. The bigger the radius more blurred will be the
image.

	sigma - Optional. Defaults to the same value as the radius. Sigma
used in the gaussian function.

Example

[image: Picture before the blur filter]
http://localhost:8888/unsafe/filters:blur(7)/http%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F8%2F8a%2F2006_Ojiya_balloon_festival_011.jpg%2F159px-2006_Ojiya_balloon_festival_011.jpg

[image: Picture after the blur filter]

Brightness

Usage: brightness(amount)

Description

This filter increases or decreases the image brightness.

Arguments

	amount - -100 to 100 - The amount (in %) to change the image brightness. Positive numbers make the image brighter and negative numbers make the image darker.

Example

[image: Picture before the brightness]
http://localhost:8888/unsafe/filters:brightness(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the brightness]

Contrast

Usage: contrast(amount)

Description

This filter increases or decreases the image contrast.

Arguments

	amount - \(-100\) to \(100\) - The amount (in %) to change the image contrast. Positive numbers increase contrast and negative numbers decrease contrast.

Example

[image: Picture before the contrast filter]
http://localhost:8888/unsafe/filters:contrast(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after positive contrast]
http://localhost:8888/unsafe/filters:contrast(-40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after negative contrast]

Convolution

Usage: convolution(matrix_items, number_of_columns, should_normalize)

Description

This filter runs a convolution matrix (or kernel) on the image. See
Kernel (image
processing) [http://en.wikipedia.org/wiki/Kernel_(image_processing)]
for details on the process. Edge pixels are always extended outside the
image area.

Arguments

	matrix_items - Semicolon separated matrix items.

	number_of_columns - Number of columns in the matrix.

	should_normalize - Whether or not we should divide each matrix item by the sum of all items.

Example

[image: Picture before the convolution filter]
Normalized Matrix:

1 2 1
2 4 2
2 1 2

http://localhost:8888/unsafe/filters:convolution(1;2;1;2;4;2;1;2;1,3,true)/http://upload.wikimedia.org/wikipedia/commons/5/50/Vd-Orig.png

[image: Picture after the convolution filter]
Matrix:

-1 -1 -1
-1 8 -1
-1 -1 -1

http://localhost:8888/unsafe/filters:convolution(-1;-1;-1;-1;8;-1;-1;-1;-1,3,false)/http://upload.wikimedia.org/wikipedia/commons/5/50/Vd-Orig.png

[image: Picture after the convolution filter]

Cover

Usage: cover()

Description

This filter is used in GIFs to extract their first frame as the image to be used as cover.

Note

This filter will only function when USE_GIFSICLE_ENGINE are set to True in thumbor.conf:

USE_GIFSICLE_ENGINE = True

Arguments

No arguments.

Example

[image: Gif before cover filter]
`http://localhost:8888/unsafe/filters:cover()/http://server.my/animated_static.gif`

[image: Gif after cover filter]

Equalize

Usage: equalize()

Description

This filter equalizes the color distribution in the image.

Arguments

No arguments.

Example

[image: Picture before the equalize filter]
http://localhost:8888/unsafe/filters:equalize()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the equalize filter]

Extract focal points

Usage: extract_focal()

Description

When cropping, thumbor uses focal points in the image to direct the area
of the image that matters most. There are several ways of finding focal
points. To learn more about focal points, visit the Detection Algorithms.

In order to use the extract_focal filter, the original image must be
a thumbor URL that features manual cropping. To learn more about manual
cropping, visit the Crop and Resize Algorithms.

Using the original manual cropping points, this filter adds the cropped
area (originally in the format /LEFTxTOP:RIGHTxBOTTOM/) as a focal point
for the new image.

For the new image, thumbor will use as the original the image URL that
was the original for the segment with the manual cropping.

This means that for an URL like:

http://localhost:8888/unsafe/300x100/filters:extract_focal()/localhost:8888/unsafe/100x150:300x200/https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_Van_Cat.jpg

Thumbor will use as original the following image URL:

https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_Van_Cat.jpg

Example

Original Image:

[image: _images/546px-Turkish_Van_Cat.jpg]
Cat’s eye cropped:

http://localhost:8888/unsafe/100x150:300x200/https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_Van_Cat.jpg

[image: _images/extract1.jpg]
A bigger image based on above’s crop with the extract_focal() filter:

http://localhost:8888/unsafe/300x100/filters:extract_focal()/localhost:8888/unsafe/100x150:300x200/https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_Van_Cat.jpg

[image: _images/extract2.jpg]
Without the filter that would be the result:

http://localhost:8888/unsafe/300x100/localhost:8888/unsafe/100x150:300x200/https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Turkish_Van_Cat.jpg/546px-Turkish_Van_Cat.jpg

[image: _images/extract3.jpg]

Filling

Usage: fill(color[,fill_transparent])

Description

This filter returns an image sized exactly as requested
independently of its ratio. It will fill the missing area with the specified color.
It is usually combined with the “fit-in” or “adaptive-fit-in” options.

Arguments

	color - the color name (like in HTML) or hexadecimal RGB expression
without the “#” character (see
https://en.wikipedia.org/wiki/Web_colors for example).

If color is “transparent” and the image format, supports transparency the
filling color is transparent.

Warning

Some engines (like OpenCV engine) do not support transparency.

If color is “auto”, a color is smartly chosen (based on the image pixels)
as the filling color.

If color is “blur”, the missing parts are filled with blurred original image.

	fill_transparent - a boolean to specify whether transparent areas of the
image should be filled or not. Accepted values are either true, false,
1 or 0. This argument is optional and the default value is false.

Example #1

The original image is:

[image: Original picture]
http://localhost:8888/unsafe/fit-in/300x300/filters:fill(blue)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the fill(blue) filter]
http://localhost:8888/unsafe/fit-in/300x300/filters:fill(f00)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the fill(f00) filter]
http://localhost:8888/unsafe/fit-in/300x300/filters:fill(add8e6)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the fill(add8e6)]
http://localhost:8888/unsafe/fit-in/300x300/filters:fill(auto)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the fill(auto) filter (since 3.7.1)]
http://localhost:8888/unsafe/fit-in/300x300/filters:fill(blur)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the fill(blur) filter (since 6.7.1)]

Example #2

The original image is:

[image: Original picture]
http://localhost:8888/unsafe/fit-in/300x225/filters:fill(blue,1)/https://github.com/thumbor/thumbor/wiki/dice_transparent_background.png

[image: Picture after the fill(blue) filter]
http://localhost:8888/unsafe/fit-in/300x225/filters:fill(f00,true)/https://github.com/thumbor/thumbor/wiki/dice_transparent_background.png

[image: Picture after the fill(f00) filter]
http://localhost:8888/unsafe/fit-in/300x225/filters:fill(add8e6,1)/https://github.com/thumbor/thumbor/wiki/dice_transparent_background.png

[image: Picture after the fill(add8e6)]
http://localhost:8888/unsafe/fit-in/300x225/filters:fill(auto,true)/https://github.com/thumbor/thumbor/wiki/dice_transparent_background.png

[image: Picture after the fill(auto) filter (since 3.7.1)]
http://localhost:8888/unsafe/fit-in/300x225/filters:fill(blur,true)/https://github.com/thumbor/thumbor/wiki/dice_transparent_background.png

[image: Picture after the fill(blur) filter (since 6.7.1)]

Focal

Usage: focal(<left>x<top>:<right>x<bottom>)

Description

This filter adds a focal point, which is used in later transforms.

Arguments

	left, top, right, bottom: All mandatory arguments in the <left>x<top>:<right>x<bottom> format.

Example

Before cropping with specific focal point:

[image: Original picture]
http://localhost:8888/unsafe/400x100/filters:focal(146x206:279x360)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

After specifying the focal point:

[image: Picture after the RGB filter]

Warning

When using this filter together with detectors, extract focal points filter or metadata parameter, unexpected behavior may occur.

Format

Usage: format(image-format)

Description

This filter specifies the output format of the image. The output must be
one of: “webp”, “jpeg”, “gif”, “png”, “avif” or “heic”.

Arguments

	image-format - The output format of the resulting image.

Example

http://localhost:8888/unsafe/filters:format(webp)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Grayscale

Usage: grayscale()

Description

This filter changes the image to grayscale.

Arguments

No arguments.

Example

[image: Picture before the grayscale filter]
http://localhost:8888/unsafe/filters:grayscale()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the grayscale filter]

Max bytes

Usage: max_bytes(number-of-bytes)

Description

This filter automatically degrades the quality of the image until the
image is under the specified amount of bytes.

Arguments

	number-of-bytes - The maximum number of bytes for the given image.

Example

Compressing the original image to less than 7.5k (ended up with ~7kb):

[image: Picture before the max_bytes filter]
http://localhost:8888/unsafe/filters:max_bytes(7500)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after 7500 max_bytes filter]

No upscale

Usage: no_upscale()

Description

This filter tells thumbor not to upscale your images.

This means that if an original image is \(300px\) width by \(200px\) height and
you ask for a \(600x400\) image, thumbor will still return a \(300x200\) image.

Arguments

No arguments allowed.

Example

http://localhost:8888/unsafe/filters:no_upscale()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Noise

Usage: noise(amount)

Description

This filter adds noise to the image.

Arguments

	amount - 0% to 100% - The amount of noise to add to the image.

Example

[image: Picture before the noise filter]
http://localhost:8888/unsafe/filters:noise(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after noise of 40%]

Proportion

Usage: proportion(percentage)

Description

This filter applies the specified proportion to the image’s height and width when cropping.

Arguments

	percentage - The float percentage of the proportion (0.0 to 1.0).

Example

[image: Picture before the percentage crop]
http://localhost:8888/unsafe/filters:proportion(0.5)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture with 50% crop]

Quality

Usage: quality(amount)

Description

This filter changes the overall quality of the JPEG image (does nothing
for PNGs or GIFs).

Arguments

	amount - 0 to 100 - The quality level (in %) that the end image will

feature.

Example

[image: Picture before the quality filter]
http://localhost:8888/unsafe/filters:quality(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after 10% quality]

Red eye

Not documented yet

RGB

Usage: rgb(rAmount, gAmount, bAmount)

Description

This filter changes the amount of color in each of the three channels.

Arguments

	rAmount - The amount of redness in the picture. Can range from -100
to 100 in percentage.

	gAmount - The amount of greenness in the picture. Can range from -100
to 100 in percentage.

	bAmount - The amount of blueness in the picture. Can range from -100
to 100 in percentage.

Example

[image: Picture before the RGB filter]
http://localhost:8888/unsafe/filters:rgb(20,-20,40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the RGB filter]

Rotate

Usage: rotate(angle)

Description

This filter rotates the given image according to the angle value passed.

Note

This filter rotates the image according to the engine.
For the PIL engine the rotation is done counter-clockwise.

Arguments

	angle - 0 to 359 - The euler angle to rotate the image by. Numbers greater or equal than 360 will be transformed to a equivalent angle between 0 and 359.

Example

[image: Picture before the rotate filter]
http://localhost:8888/unsafe/filters:rotate(90)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the 90 degrees rotate]

Round corners

Usage: round_corner(a|b,r,g,b,[transparent])

Description

This filter adds rounded corners to the image using the specified color
as background.

Arguments

	a|b - amount of pixels to use as radius. The argument b is not required, but it specifies the second value for the ellipsis used for the radius.

	transparent - Optional. If set to true/1, the background will be transparent.

Examples

[image: Picture before the round corners filter filter]
http://localhost:8888/unsafe/filters:round_corner(20,255,255,255)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after rounded corners]
http://localhost:8888/unsafe/filters:round_corner(20|40,0,0,0)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after rounded corners]
http://localhost:8888/unsafe/filters:round_corner(30,0,0,0,1)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after rounded corners (transparent)]

Saturation

Usage: saturation(amount)

Description

This filter increases or decreases the image saturation.

Arguments

	amount - \(-100\) to \(100\) - The amount (in %) to change the image saturation. Positive numbers increase saturation and negative numbers decrease saturation.

Example

[image: Picture before the saturation filter]
http://localhost:8888/unsafe/filters:saturation(40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after positive saturation]
http://localhost:8888/unsafe/filters:saturation(-40)/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after negative saturation]

Sharpen

Usage: sharpen(sharpen_amount,sharpen_radius,luminance_only)

Description

This filter enhances apparent sharpness of the image. It’s heavily based
on Marco Rossini’s excellent Wavelet sharpen GIMP plugin. Check
http://registry.gimp.org/node/9836 for details about how it work.

Arguments

	sharpen_amount - Sharpen amount. Typical values are between \(0.0\) and
\(10.0\).

	sharpen_radius - Sharpen radius. Typical values are between \(0.0\) and
\(2.0\).

	luminance_only - Sharpen only luminance channel. Values can be
true or false.

Example 1

[image: Picture before the sharpen filter]
http://localhost:8888/unsafe/filters:sharpen(2,1.0,true)/http://videoprocessing.ucsd.edu/~stanleychan/research/pix/Blurred_foreman_0005.png

[image: Picture after the sharpen filter]

Example 2

[image: Picture before the sharpen filter]
http://localhost:8888/unsafe/filters:sharpen(1.5,0.5,true)/http://images.cambridgeincolour.com/tutorials/sharpening_eagle2-original.jpg

[image: Picture after the sharpen filter]

Stretch

Usage: stretch()

Description

This filter stretches the image until it fits the required width and height, instead of cropping the image.

Example

[image: Picture before the stretch filter]
http://localhost:8888/unsafe/200x100/filters:stretch()/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

[image: Picture after the stretch filter]

Strip EXIF

Usage: strip_exif()

Description

This filter removes any Exif information in the resulting image. To keep the copyright information you have to set the configuration PRESERVE_EXIF_COPYRIGHT_INFO = True.

This is useful if you have set the configuration PRESERVE_EXIF_INFO = True but still wish to overwrite this behavior in some cases
(e.g. for image icons)

Arguments

No arguments

Example

http://localhost:8888/unsafe/filters:strip_exif()/http://www.arte.tv/static-epgapi/057460-011-A.jpg

Strip ICC

Usage: strip_icc()

Description

This filter removes any ICC information in the resulting image. Even
though the image might be smaller, removing ICC information may result
in loss of quality.

Arguments

No arguments

Example

http://localhost:8888/unsafe/filters:strip_icc()/http://videoprocessing.ucsd.edu/~stanleychan/research/pix/Blurred_foreman_0005.png

Upscale

Usage: upscale()

Description

This filter tells thumbor to upscale your images. This only makes sense with
“fit-in” or “adaptive-fit-in”.

This means that if an original image is \(300px\) width by \(200px\) height and you
ask for a \(600x500\) image, the filter will resize it to \(600x400\).

Arguments

No arguments allowed.

Example

http://localhost:8888/unsafe/fit-in/600x500/filters:upscale()/https://raw.githubusercontent.com/thumbor/thumbor/e86324e49d7e53acc2a8057e43f3fdd2ca5cea75/docs/images/dice_transparent_background.png

Watermark

Usage: watermark(imageUrl, x, y, alpha [, w_ratio [, h_ratio]])

Description

This filter adds a watermark to the image. It can be positioned inside the image
with the alpha channel specified and optionally resized based on the image size by
specifying the ratio (see Resizing).

Arguments

	imageUrl - Watermark image URL. It is very important to understand
that the same image loader that Thumbor uses will be used here. If
this URL contains parentheses they MUST be url encoded, since these
are the characters Thumbor uses as delimiters for filter parameters.

	x - Horizontal position that the watermark will be in. Positive
numbers indicate position from the left and negative numbers indicate
position from the right.
If the value is ‘center’ (without the single quotes), the watermark will be centered horizontally.
If the value is ‘repeat’ (without the single quotes), the watermark will be repeated horizontally.
If the value is a positive or negative number followed by a ‘p’ (ex. 20p) it will calculate the value
from the image width as percentage

	y - Vertical position that the watermark will be in. Positive numbers
indicate position from the top and negative numbers indicate position
from the bottom.
If the value is ‘center’ (without the single quotes), the watermark will be centered vertically.
If the value is ‘repeat’ (without the single quotes), the watermark will be repeated vertically
If the value is a positive or negative number followed by a ‘p’ (ex. 20p) it will calculate the value
from the image height as percentage

	alpha - Watermark image transparency. Should be a number between 0
(fully opaque) and 100 (fully transparent).

	w_ratio - percentage of the width of the image the watermark should fit-in, defaults to ‘none’
(without the single quotes) which means it won’t be limited in the width on resizing but also won’t
be resized based on this value

	h_ratio - percentage of the height of the image the watermark should fit-in, defaults to ‘none’
(without the single quotes) which means it won’t be limited in the height on resizing but also won’t
be resized based on this value

Example

http://thumbor-server/filters:watermark(http://my.site.com/img.png,-10,-10,50)/some/image.jpg

[image: Picture after the watermark filter]

http://thumbor-server/filters:watermark(http://my.site.com/img.png,10p,-20p,50)/some/image.jpg

[image: Picture explaining watermark relative placement feature]

Resizing

Resizing is being done by defining borders the watermark needs to fit in or being upscaled to.
The ratio of the watermark will not be changed and will be expanded or shrinked to the size which
fits best into the borders.

Some examples are shown below with an original image having width=300 and height=200 and an imaginary
watermark having width=30 and height=40. Borders are shown in red and the watermark drafted in green.

Considering original image to be 300x200:

	watermark(imageUrl, 30, 10, 50, 20)

20% of the width: 300px*0.2 = 60px so the original watermark width is 30px which means it
can be resized by 2.

Because the height isn’t limited it can grow to 2x40px which is 80px.

[image: Picture explaining watermark resizing feature]

	watermark(imageUrl, 30, 10, 50, none, 15)

15% of the height: 200px*0.15 = 30px so the original watermark height is 40px which means
it has to shrink by 25%.

Because the width isn’t limited it can shrink to 0.75*30px which is 22.5px (rounded to 23px).

[image: Picture explaining watermark resizing feature]

	watermark(imageUrl, 30, 10, 50, 30, 30)

30% of the width: 300px*0.3 = 90px

and

30% of the height: 200px*0.3 = 60px

so the original watermark width is 30px but cannot use 90px because then (to keep
the ratio) the height would need to become (40/30)*90px=120px but only 60px is allowed.

Therefor the height is limiting the resizing here and height would become 60px and width
would be (30/40)*60px=45px which fits into the 90px border.

[image: Picture explaining watermark resizing feature]

Detectors

	Enabling detectors
	Configuration

	Using it

	Lazy Detection

	Available Detectors

	Detection Algorithms
	Facial Detection

	Feature Detection

	Available detectors
	Face Detector

	Feature Detector

	Glasses Detector

	Profile Detector

	Queued Detector

	Lazy Detection
	Rationale

	Queued Detection

	How thumbor deals with queued detection?

	Redis Support

Enabling detectors

Out of the box, thumbor does not enable any feature or facial detection.
Enabling it is pretty easy, though.

Note

Starting with release 7.0.0 thumbor depends on opencv-python-headless.
This means that it should be extremely easy to use the face and feature
detectors.

For information on all built-in detectors check the Available detectors page.

Configuration

In order to tell thumbor what detectors it should run in the original
image, you must add them to your thumbor.conf file in the following
key:

DETECTORS = [
 'thumbor.detectors.face_detector',
 'thumbor.detectors.feature_detector',
]

The above configuration tells thumbor that it should run both the facial
detection and the feature detection. These are mutually exclusive,
meaning that if a face is detected, the feature detector won’t be run.

Using it

After restarting thumbor, it should be as easy as adding a /smart
option to your URLs, like:

http://localhost:8888/unsafe/200x400/smart/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Note

Whenever you are not sure what thumbor is “seeing”, use the debug mode:

http://localhost:8888/unsafe/debug/200x400/smart/https%3A%2F%2Fgithub.com%2Fthumbor%2Fthumbor%2Fraw%2Fmaster%2Fexample.jpg

Thumbor will draw a square on all focal points it found. That way you can be sure of why an image was cropped the way it was.

Lazy Detection

Facial detection can be pretty expensive for thumbor, so it is not
advisable to do it synchronously. Please refer to the Lazy Detection
page for instructions on using it.

Available Detectors

A list of available detectors can be found at Available detectors.

Detection Algorithms

If the smart mode of thumbor has been specified in the uri (by the
/smart portion of it), thumbor will use it’s smart detectors to find
focal points.

thumbor comes pre-packaged with two focal-point detection algorithms:
facial and feature. First it tries to identify faces and if it can’t
find any, it tries to identify features (more on that below).

Facial Detection

For instructions on how to get facial detection coordinates see
Metadata Endpoint .

Note

thumbor uses OpenCV (http://opencv.org) to detect faces.
OpenCV returns the rectangle coordinates for the faces it identifies.
You can specify the HAAR file Thumbor should use for identification.

Original image

[image: Original image]

Image after detection

Notice how red rectangles show the areas identified as faces:

[image: Red rectangles are the areas identified as faces]
After retrieving these squares from OpenCV, thumbor calculates the
center of mass of the image using weighted average.

Consider that OpenCV returned 3 squares at (10, 10, 100, 100), (150,
100, 100, 100), (300, 300, 80, 50), being (x, y, width, height), as
such:

[image: Faces at 10x10, 150x100, 300x300]
In order to find the center of mass for all the faces, we must first
find the center and weight of each rectangle. We define weight in this
scenario as the area of the rectangle.

So, for the faces in our example (*x*,*y* being the
coordinates of the rectangle’s center and *z* the rectangle weight):

Face 1:

	\(x = (10 + 100) ÷ 2 = 55\)

	\(y = (10 + 100) ÷ 2 = 55\)

	\(z = 100 * 100 = 10000\)

Face 2:

	\(x = (150 + 100) ÷ 2 = 125\)

	\(y = (100 + 100) ÷ 2 = 100\)

	\(z = 100 * 100 = 10000\)

Face 3:

	\(x = (300 + 80) ÷ 2 = 190\)

	\(y = (300 + 50) ÷ 2 = 175\)

	\(z = 80 * 50 = 4000\)

In order to find the center of mass we’ll do a weighted average of
the X and Y coordinates of the faces using:

Horizontal Axis - X: \(((55 * 10000) + (125 * 10000) + (190 * 4000)) ÷ 24000 = 106\)

Vertical Axis - Y: \(((55 * 10000) + (100 * 10000) + (175 * 4000)) ÷ 24000 = 93\)

So for the faces found by OpenCV in that image we have the center of
mass of the picture being \(106x93\).

Using Focal Points for Cropping

After finding the center of mass we can use it as the focal point for
cropping. Given an image of \(800x600\) and a focal point at \(106x93\), we
need to determine the percentage that needs to be cropped from the top,
bottom, left and right sides of the image.

To determine the percentage we use simple math to figure how far from
the top and the left side the center of mass is:

From the left - \(left = 106 ÷ 800 * 100 = 13.25\%\)

From the top - \(top = 93 ÷ 600 * 100 = 15.50\%\)

Using the same example from the Crop and Resize Algorithms page, we
need to crop \(300px\) out of the height of the image. In possession of
the percentages of crop above, we can calculate how much we need to crop
out of the top and bottom with:

Top - \(top = 300 * 0.155 ~= 46\)

Bottom - just subtract top \(46px\) from the amount of crop (300px): \(bottom = 300 - 46 = 254\)

So, now we now we have to remove \(46px\) out of the top of the picture
and \(254px\) out of the bottom of the picture. In an \(800x600\) picture,
that means cropping from (0, 46) to (800, 346), resulting in an
\(800x300px\) image.

Assuming we would crop \(300px\) horizontally, the cropping would be:

Left - \(left = 300 * 0.135 ~= 40\)

Right - just subtract left \(40px\) from the amount of crop
(300px): \(right = 300 - 40 = 260\)

In an image of \(800x600\), that means cropping from (40, 0) to (540,
600), resulting in a \(500x600px\) image. This would not be the case for
this image, though.

Feature Detection

If no faces are found in the picture, we still try to find important
features in the image, provided by the Good Features to Track Algorithm
in OpenCV (http://bit.ly/evAU95).

According to OpenCV documentation, this algorithm finds “important”
corners in the image. It then returns a list of (x, y) values.

We can see the detection taking place in the following images:

[image: Original image]
The points identified by the good features algorithm:

[image: The points identified by the good features algorithm]
The cropping based in these features is analogous to the face one,
except that all points have a weight of *1.0* and are already their
centers.

Let’s consider that we found 3 feature points: 10x15, 30x40,
25x60. To find the center of mass we would do ((10 + 30 + 25) / 3 ~=
22) to find the horizontal component and ((15 + 40 + 60) / 3 ~= 39) for
the vertical one. This means that our center of mass in this scenario is
22x39.

Given an image of 800x600 and a center of mass of 22x39, let’s find
the left and top percentages:

From the left - \(22 / 800 * 100 = 2.75\%\)

From the top - \(93 / 600 * 100 = 6.50\%\)

Assuming we are cropping 300px of the height, we’ll crop top and
bottom according to:

Top - \(300 * 0.0275 ~= 9\)

Bottom - just subtract top (9px) from the amount of crop (300px)
- \(300 - 9 = 291\)

In an image of 800x600, that means cropping from (0, 9) to (800,
309), resulting in a 800x300px image.

If we were cropping 300px of the width instead, we would crop left and
right according to:

Left - \(300 * 0.065 ~= 20\)

Right - just subtract left (20px) from the amount of crop
(300px) - \(300 - 20 = 280\)

In an image of 800x600, that means cropping from (20, 0) to (520,
600), resulting in a 500x600px image.

Available detectors

Face Detector

thumbor.detectors.face_detector

It detects faces, It considers the frontal part of the face for detection.

Feature Detector

thumbor.detectors.feature_detector

Detector used to find relevant focal points in the image. “Features” in this case and in other cases such as machine learning, are pieces of information (in this case, pieces of the image) that are relevant to solving a computational problem. For Thumbor we use this set of focal points to identify faces, for example. We use the first 10 set of points found.

Glasses Detector

thumbor.detectors.glasses_detector

It detects glasses on the faces.

Profile Detector

thumbor.detectors.profile_detector

It detects faces, It considers the side part of the face for detection.

Queued Detector

thumbor.detectors.queued_detector

Detector used to allow face detection process asynchronously.

Lazy Detection

Rationale

Thumbor performs pipeline detection of focal points for a given image.
What this means is that it tries to determine one detection at a time,
only skipping to the next if the current one fails.

We could configure it to run frontal face detection, then if it fails,
try profile face detection and if it fails, best features detection.

As you can imagine, this is a cumbersome process and can take up
precious cpu time from your server(s), eventually leading it to
starvation of CPU. This is why we’ve implemented what we call Queued
Detection.

Queued Detection

Configuring thumbor for lazy detecting is as simple as specifying a
detector that supports queued detection.

Thumbor ships with three such detectors, called:

	thumbor.detectors.queued_detector.queued_complete_detector

	thumbor.detectors.queued_detector.queued_face_detector

	thumbor.detectors.queued_detector.queued_feature_detector

These are responsible, respectively, for pipeline detection of face and
feature, only face or only feature.

You can check what additional configuration you need to add to your
configuration file (thumbor.conf) in order to have the bundled detectors
working.

How thumbor deals with queued detection?

When an image request arrives with a flag of “smart” detection, a call
is made to the queued detector and it tells thumbor to skip smart
detection and to serve the image with non-smart cropping (much faster).

The call to the queued detector places a message in a Redis Queue that
will later be processed in order to detect focal points in the image.

The next time a request arrive for the same image and with a flag of
“smart” detection, if information on detection is already available (if
the message in the queue has already been processed), thumbor uses that
info to do smart cropping and serves the result.

If the image still hasn’t been processed, the same process from before
applies, except thumbor won’t place another message in the queue. This
is intended as a way not to flood the queue with requests for the same
image.

Redis Support

Thumbor supports Redis single node [https://redis.io/docs/getting-started/].
and Redis sentinel [https://redis.io/docs/manual/sentinel/].

Image loader

Pre-packaged loaders

thumbor comes pre-packaged with http and filesystem loaders.

Http loader

The http loader gets the original image portion of the URI and performs
an HTTP GET to it. It then returns the image’s string representation.

The http loader uses the ALLOWED_SOURCES configuration to
determine whether or not an image is from a trusted source and can thus
be loaded.

You can specify the maximum size of the source image to be loaded. The
http loader first gets the image size (without loading its contents),
checks against your specified size and returns 404 if the source image
size is larger than the max size. The max size option is
MAX_SOURCE_SIZE and the default is no maximum size.

To use it you should set the LOADER configuration to
‘thumbor.loaders.http_loader’.

Https loader

The https loader works the same way as the http loader, except that it
defaults to https instead of http.

To use it you should set the LOADER configuration to
‘thumbor.loaders.https_loader’.

Strict https loader

The strict https loader works the same way as the http loader, except
that it only allows to load images over https.

To use it you should set the LOADER configuration to
‘thumbor.loaders.strict_https_loader’.

File loader

The file loader gets the original image portion of the URI and retrieves
the file from the file system from a known path specified by the
FILE_LOADER_ROOT_PATH configuration.

It joins the specified path with the configured root path and reads the
image file if it exists.

To use it you should set the LOADER configuration to
‘thumbor.loaders.file_loader’.

File loader with http loader fallback

In some environments you need both kinds of file loading. For this use case
you can use as loader with built-in fallback.

This loader will try to load images from local file storage. In case
of an error the loader retry to load image with http_loader. If both attempts failed
you’ll get an error.

To use it you should set the LOADER configuration to
‘thumbor.loaders.file_loader_http_fallback’.

Compatibility Loader

The compatibility loader allows you to use legacy loaders (that do not support AsyncIO)
in order to make it easier to transition to thumbor’s Python 3 version.

To use it you should set the LOADER configuration to
‘thumbor.compatibility.loader’.

You also need to specify what’s the legacy loader that the compatibility loader will use.
Just set the COMPATIBILITY_LEGACY_LOADER configuration to the full name of the legacy
loader you want to use. i.e.: COMPATIBILITY_LEGACY_LOADER = ‘tc_aws.loaders.s3_loader’

Image storage

thumbor uses image storages to perform less retrievals of images from
the sources, thus potentially saving expensive resources (such as
outbound network).

Pre-Packaged Storages

thumbor comes with filesystem and a mixed storage.
There’s also a nostorage storage for debugging or benchmarking
purposes.

Filesystem Storage

thumbor can store original images in the filesystem.

The file storage uses the FILE_STORAGE_ROOT_PATH configuration
to save the images. It then joins the original image part of the URI to
create the proper path to store the image in the filesystem.

There’s a STORAGE_EXPIRATION_SECONDS option that will determine
the time in seconds that a file is considered to be expired. When a file
is expired, thumbor will try to retrieve the file using the specified
Image loader.

To use the filesystem storage set the configuration option of
STORAGE to ‘thumbor.storages.file_storage’.

NoStorage Storage

This is a storage intended for debugging or benchmarking purposes. It
does not store any images and always returns None when thumbor asks for
an image.

In order to use this storage set the configuration option of
STORAGE to ‘thumbor.storages.no_storage’.

MixedStorage Storage

This is a storage intended for scenarios where you want to store the
original images files one way and the security key another (or detector
information).

A good example would be storing files in the filesystem, while storing
security keys in a database.

In order to use this storage set the configuration option of
STORAGE to ‘thumbor.storages.mixed_storage’.

You must specify the MIXED_STORAGE_FILE_STORAGE,
MIXED_STORAGE_CRYPTO_STORAGE and MIXED_STORAGE_DETECTOR_STORAGE
options to define the original images storage, the security key storage
and the detector results storage, respectively. Here’s a sample
configuration:

MIXED_STORAGE_FILE_STORAGE = 'thumbor.storages.file_storage'
MIXED_STORAGE_CRYPTO_STORAGE = 'thumbor.storages.redis_storage'
MIXED_STORAGE_DETECTOR_STORAGE = 'thumbor.storages.redis_storage'

FILE_STORAGE_ROOT_PATH = '/tmp/mypath'

REDIS_STORAGE_SERVER_HOST = 'localhost'
REDIS_STORAGE_SERVER_PORT = 6379
REDIS_STORAGE_SERVER_DB = 0

As you can see, you still have to tell thumbor the specific
configurations for each storage you choose.

Compatibility Storage

The compatibility storage allows you to use legacy storages (that do not support AsyncIO)
in order to make it easier to transition to thumbor’s Python 3 version.

To use it you should set the STORAGE configuration to
‘thumbor.compatibility.storage’.

You also need to specify what’s the legacy storage that the compatibility storage will use.
Just set the COMPATIBILITY_LEGACY_STORAGE configuration to the full name of the legacy
storage you want to use. i.e.: COMPATIBILITY_LEGACY_STORAGE = ‘tc_aws.storages.s3_storage’

Result Storage

thumbor uses a result storage to improve the speed of responding
subsequent requests for the same image.

When a request for a given image with a set of parameters arrive,
thumbor processes the request and before returning it, asks for the
result storage to store it.

The next time the same request arrives, it will get it from the result
storage and return it, thus saving a lot of processing.

Pre-packaged result storages

thumbor comes pre-packaged with a filesystem result storage.

Filesystem

The file system result storage, as the name implies, stores images in
the filesystem.

Images are stored in whatever path is specified in the
RESULT_STORAGE_FILE_STORAGE_ROOT_PATH, and consequently retrieved
from the same path.

By default, the file system result storage keeps images forever. You are
allowed to specify an expiration, though, using the
RESULT_STORAGE_EXPIRATION_SECONDS configuration. Again, as the name
implies, it specifies the number of seconds with which files expire.

To use it you should set the RESULT_STORAGE configuration to
'thumbor.result_storages.file_storage'.

Compatibility Result Storage

The compatibility result storage allows you to use legacy result storages (that do not support AsyncIO)
in order to make it easier to transition to thumbor’s Python 3 version.

To use it you should set the RESULT_STORAGE configuration to
‘thumbor.compatibility.result_storage’.

You also need to specify what’s the legacy result storage that the compatibility result storage will use.
Just set the COMPATIBILITY_LEGACY_RESULT_STORAGE configuration to the full name of the legacy
result storage you want to use. i.e.: COMPATIBILITY_LEGACY_RESULT_STORAGE = ‘tc_aws.result_storages.s3_storage’

Optimizers

Optimizers are utilities that will fine-tune some aspect of the result image thumbor generates.

Even though optimizers can change images in any way, the usual use cases for these are:

	Reduce image weight in bytes;

	Improve image quality.

Built-in Optimizers

	jpegtran

	gifv

jpegtran

Jpegtran is a lossless jpeg optimizer which can make your jpegs smaller by optimizing DCT coefficients. Information on jpegtran can be a bit difficult to find but the linux man page is pretty good: https://linux.die.net/man/1/jpegtran

Jpegtran can be used in conjunction with Thumbor. If the optimizer has been activated, Thumbor will first process your jpeg normally then it will hand the jpeg off to jpegtran for further optimizations before Thumbor returns the final image.

To use jpegtran with Thumbor you must first install jpegtran, various linux distros often provide a package by the same name or it can be installed from source. You should make sure that jpegtran is in PATH, do a which jpegtran and you should see an absolute path where the jpegtran resides. It is also possible to use mozjpeg’s version of jpegtran as a drop-in replacement of libjpeg-turbo’s version.

You also need to enable the Thumbor jpegtran optimizer in your thumbor.conf, like so:

OPTIMIZERS = [
 'thumbor.optimizers.jpegtran'
]

You can also manually specify the jpegtran path, like this:

JPEGTRAN_PATH=/usr/local/bin/jpegtran

Once activated, no extra url parameters are needed - jpegtran will run on all jpegs automatically. If you have opted to use progressive jpegs via the PROGRESSIVE_JPEG option, jpegtran will also honor and product progressive jpegs.

It is possible to supply progressive scans file via JPEGTRAN_SCANS_FILE config option.

gifv

The gifv optimizer is able to convert gifs to mp4 or webm videos, often resulting in dramatically smaller sized files.

Gifv is categorized as experimental and should be used with caution. It uses ffmpeg to convert gifs to videos and so it’s sensitive to changes with ffmpeg. It’s recommended to lock your ffmpeg version with a fixed version (chef, docker, etc) and if updating make sure to check that the update doesn’t break gifv. FFmpeg version 3.2.4 is the current recommended version. Later version, such as 3.3 will break the proper conversion of gif delays to frame durations in videos … meaning videos will not be the same length as equivelant gifs.

To enable gifv, ensure ffmpeg is in PATH and enable the optimizer in your config:

OPTIMIZERS = [
 'thumbor.optimizers.gifv',
]

Once activated, you must add the gifv() option to your filters list. An example request might look like this:

http://localhost:8888/unsafe/filters:gifv()/http://localhost/livingroom.gif

The above example will default to using the mp4 video container with h264 video. You can also be explicit:

http://localhost:8888/unsafe/filters:gifv(mp4)/http://localhost/livingroom.gif

or use explicitly specify webm

http://localhost:8888/unsafe/filters:gifv(webm)/http://localhost/livingroom.gif

Because videos (in mp4 or webm format) cannot contain alpha transparency a background color will be automatically added. The default color is white. You can also specify a background color:

http://localhost:8888/unsafe/filters:gifv():background_color(ff00ff)/http://localhost/livingroom.gif

http://localhost:8888/unsafe/filters:gifv():background_color(f0f)/http://localhost/livingroom.gif

http://localhost:8888/unsafe/filters:gifv():background_color(magenta)/http://localhost/livingroom.gif

The color must be specified in 6 character hex, 3 character hex or color name. But 6 or 3 character hex are the preferred formats. Including a # symbol in your color will break the url if not url encoded and thumbor will error on the request. The recommendation is to not use them at all which also makes urls shorter. But if you must a leading %23 will probably work.

Customizing Thumbor

	Custom Storages

	Custom Image Loaders

	Custom Result Storages

	Custom Filters
	Available Filter Argument Types

	Custom Engines

	Custom detection
	Creating a Custom Detector

	Custom Image Optimizers

	Custom Error Handlers

	Custom Handler Lists
	Built-in Handler Lists

	Writing a new Handler List

	Plugins
	Storages

	Metrics

	Extensions

	Engines

	Libraries
	Available Libraries

	Implementing a library

	Library Tests - Generating HMAC of the URLs

	Library Tests - Scenarios

	More Information

Custom Storages

If the built-in storages do not suit your needs, you can always
implement your own storage and use it in the STORAGE
configuration.

All you have to do is create a class called Storage that inherits from
BaseStorage in your module, as can be seen in
https://github.com/thumbor/thumbor/blob/master/thumbor/storages/file_storage.py.

Custom Image Loaders

If thumbor image loaders do not meet your needs you can implement a new
image loader.

The structure of the module you should implement can be seen in the http
loader at
https://github.com/thumbor/thumbor/blob/master/thumbor/loaders/http_loader.py.

The only required method to implement is the one that receives the
portion of the URI that has the original image path, named load.
This method also receives a callback and should call the callback with
the results of reading the image.

Another example can be seen in the filesystem loader at
https://github.com/thumbor/thumbor/blob/master/thumbor/loaders/file_loader.py.

You can optionally implement a validate(URI) method that thumbor will
call to make sure that your loader can accept the user required URI.

Custom Result Storages

In order to implement your own result storage, you have to implement a
few methods. A reference implementation can be found at the File
Storage [https://github.com/thumbor/thumbor/blob/master/thumbor/result_storages/file_storage.py].

The required methods are put, get, validate_path and
normalize_path.

Custom Filters

Filters are an easy way to transform images using a pipeline. Creating a new filter is very simple, as we’ll see.

The first step is creating a filter class that inherits from thumbor.filters.BaseFilter and naming it Filter:

from thumbor.filters import BaseFilter

class Filter(BaseFilter):
 pass

The next step is actually implementing the filter. Let’s say we want to create
the quality(99) filter, a filter that takes a number parameter and
sets the image quality to that parameter.

Note

Yep, this filter already exists and is built-in, but it is simple enough that we can talk on how to do it. Let’s get on with it.

from thumbor.filters import BaseFilter

class Filter(BaseFilter):
 @filter_method(BaseFilter.PositiveNumber)
 async def quality(self, value):
 self.context.request.quality = value

Let’s analyse it:

	The filter_method decorator takes as parameters any number of types (more on types below) you want to have as arguments to your filter;

	The filter method should be named according to how you want it to be invoked by thumbor (a.k.a the URL part). In our example, our filter will be invoked with quality(99);

	The filter method is just an async function that you can do whatever you need with the image.

And that’s it, we got our filter. In order to use it, we need to put it in our thumbor.conf:

from thumbor.filters import BUILTIN_FILTERS

FILTERS = BUILTIN_FILTERS + [
 'mylib.filters.quality',
]

Available Filter Argument Types

Each parameter type has a regular expression that matches arguments of the given type, as well as a python type.

For more details on each of the types, check BaseFilter class in thumbor’s codebase [https://github.com/thumbor/thumbor/blob/master/thumbor/filters/__init__.py#L91].

	BaseFilter.PositiveNumber;

	BaseFilter.PositiveNonZeroNumber;

	BaseFilter.NegativeNumber;

	BaseFilter.Number;

	DecimalNumber;

	Boolean;

	String.

Custom Engines

TBW.

Custom detection

If you need more detection than the pre-packaged detectors are able to
give you (i.e.: you need to detect glasses), you can always implement
your own detectors.

If your detector can be found using python’s import mechanism, thumbor
will be able to use it. Just add its full name to the detectors
Configuration.

Creating a Custom Detector

As you can see here https://github.com/thumbor/thumbor/blob/master/thumbor/detectors/face_detector/__init__.py
it is pretty easy to implement your own custom detector.

All you have to do is create a class that inherits from BaseDetector and
implement a detect method that receives a context dictionary.

In the context dictionary there’s a key called “focal_points” to which
you should append any focal points you found in the picture (using the
FocalPoint class).

If your detector does not find any points, simple call the next() method
passing in the context, so further detection can occur.

Custom Image Optimizers

TBW.

Custom Error Handlers

Writing your own error handler is very simple. Just create a class
called ErrorHandler, like the one below:

Class that lives in mylib.error_handling
class ErrorHandler:
 def __init__(self, config):
 # perform any initialization needed
 pass

 def handle_error(self, context, handler, exception):
 # do your thing here
 # context is thumbor's context for the current request
 # handler is tornado's request handler for the current request
 # exception is the error that occurred

When you have your handler done, just put it’s full name in thumbor.conf
and make sure thumbor can import it (it’s somewhere in PYTHONPATH).
You also need to set USE_CUSTOM_ERROR_HANDLING to True.

USE_CUSTOM_ERROR_HANDLING = True
ERROR_HANDLER_MODULE = 'mylib.error_handling'

Custom Handler Lists

Handler Lists are responsible for adding new handlers to thumbor.

Even thumbor’s own handlers (other than the default image crop handler) are added using handler lists(healthcheck, blacklist…).

Built-in Handler Lists

Thumbor comes with three handler lists built-in:

	thumbor.handler_lists.healthcheck;

	thumbor.handler_lists.blacklist;

	thumbor.handler_lists.upload.

The healthcheck handler list adds a handler at whatever is in the HEALTHCHECK_ROUTE config.

The blacklist handler list adds a /blacklist handler that can be used to blacklist images.

The upload handler list adds two handlers for uploading and retrieving uploaded images.

Writing a new Handler List

Creating your own handler list is as simple as creating a new module with a get_handlers method:

from typing import Any, cast

from thumbor.handler_lists import HandlerList

from my.handlers.index import IndexHandler

def get_handlers(context: Any) -> HandlerList:
 something_enabled = cast(bool, self.context.config.SOMETHING_ENABLED)
 if not something_enabled:
 return []
 return [
 (r"/my-url/?", IndexHandler, {"context": self.context}),
]

After your handler list can be imported with python (check with python -c 'import <<your handler list module>>'),
just add it to thumbor’s config:

from thumbor.handler_lists import BUILTIN_HANDLERS

Two things worth noticing here:
1) The handler list order indicates precedence, so whatever matches first will be executed;
2) Please do not forget thumbor's built-ins or you'll kill thumbor functionality.
HANDLER_LISTS = BUILTIN_HANDLERS + [
 "my.handler_list',
]

Plugins

With its pluggable architecture, thumbor provides extension points for a
myriad of plug-in: storages, loaders, detectors, filters.

If your plug-in is not listed here, please create an issue with the
details and we’ll add it here.

Storages

thumbor_aws [https://github.com/thumbor-community/aws] (by Thumbor Community [https://github.com/thumbor-community])

Thumbor [https://github.com/thumbor/thumbor/wiki] is a smart
imaging service. It enables on-demand crop, resizing and flipping of
images.

AWS [https://aws.amazon.com/] is a cloud service, providing - among other things - storage capabilities.

This module provides support for AWS S3 interconnection, as a loader, a storage and/or a result storage.

	URL: https://github.com/thumbor-community/aws

	Installing: pip install tc_aws

To get exhaustive details about configuration options & setting it up, go to the documentation of the plugin [https://github.com/thumbor-community].

thumbor_hbase [https://github.com/dhardy92/thumbor_hbase] (by Damien Hardy [https://github.com/dhardy92])

Thumbor [https://github.com/thumbor/thumbor/wiki] is a smart
imaging service. It enables on-demand crop, resizing and flipping of
images.

Hbase [https://hbase.apache.org/] is a column oriented database from
the hadoop ecosystem.

This module provide support for Hadoop Hbase as large auto replicant
key/value backend storage for images in Thumbor.

	URL: https://github.com/dhardy92/thumbor_hbase

	Installing: pip install thumbor_hbase

Using it is simple, just change your configuration in thumbor.conf:

HBASE_STORAGE_SERVER_HOST = "localhost"
HBASE_STORAGE_SERVER_PORT = 9000
HBASE_STORAGE_TABLE = "storage-table"
HBASE_STORAGE_FAMILY = "storage-family"

If you want to use thumbor_hbase for loading original images, change
your thumbor.conf to read:

LOADER = "thumbor_hbase.loader"

If you want to use thumbor_hbase for storage of original images, change
your thumbor.conf to read:

STORAGE = "thumbor_hbase.storage"

thumbor_mongodb [https://github.com/dhardy92/thumbor_mongodb] (by Damien Hardy [https://github.com/dhardy92])

Thumbor [https://github.com/thumbor/thumbor/wiki] is a smart
imaging service. It enables on-demand crop, resizing and flipping of
images.

MongoDB [http://www.mongodb.org/] is a document oriented NoSQL
database.

This plugin for Thumbor is a loader that can reach images from a mongodb
collection based on its Object(_id).

	URL: https://github.com/dhardy92/thumbor_mongodb

	Installing: pip install thumbor_mongodb

Using it is simple, just change your configuration in thumbor.conf:

LOADER = 'thumbor_mongodb.loader'
MONGO_LOADER_CNX_STRING = 'mongodb://mongodbserver01,mongodbserver02:27017'
MONGO_LOADER_SERVER_DB = 'thumbor'
MONGO_LOADER_SERVER_COLLECTION = 'images'
MONGO_LOADER_DOC_FIELD = 'content'

thumbor_riak [https://github.com/dhardy92/thumbor_riak] (by Damien Hardy [https://github.com/dhardy92])

Riak [http://basho.com/riak/] is a distributed document oriented
database implementing the consistent hashing algorithm from the Dynanmo
publication by Amazon.

This module provide support for Riak as a large auto replicant key/value
backend storage for images in Thumbor.

	URL: https://github.com/dhardy92/thumbor_riak

	Installing: pip install thumbor_riak (require thumbor)

Using it is simple, just change your configuration in thumbor.conf:

Use riak for storage.
STORAGE = 'thumbor_riak.storage'

Put the url for your riak install here
RIAK_STORAGE_BASEURL = "http://my-riak-install-base-url"

thumbor_rackspace [https://github.com/CodingNinja/thumbor_rackspace] (by David Mann [https://github.com/CodingNinja])

This plugin allows users to store objects in the Rackspace cloud for
result storage.

	URL: https://github.com/CodingNinja/thumbor_rackspace

	Installing: pip install thumbor_rackspace

Using it is simple, just change your configuration in thumbor.conf:

Use rackspace for result storage.
For more info on result storage: https://github.com/thumbor/thumbor/wiki/Result-storage
RESULT_STORAGE = 'thumbor_rackspace.result_storages.cloudfile_storage'

Pyrax Rackspace configuration file location
RACKSPACE_PYRAX_CFG = /var/thumbor/.pyrax.cfg

Result Storage options
RACKSPACE_RESULT_STORAGE_EXPIRES = True # Set TTL on cloudfile objects
RACKSPACE_RESULT_STORAGES_CONTAINER = "cloudfile-container-name"
RACKSPACE_RESULT_STORAGES_CONTAINER_ROOT = "/"

thumbor_ceph [https://github.com/ksperis/thumbor_ceph] (by Laurent Barbe [https://github.com/ksperis])

Ceph [https://ceph.com/] a distributed object store designed to
provide excellent performance, reliability and scalability.

This module provide support for Ceph RADOS as backend storage for
images.

	URL: https://github.com/ksperis/thumbor_ceph

	Installing:
apt-get install python-ceph && pip install thumbor_ceph

Configuration in thumbor.conf:

################################# File Storage #################################
STORAGE = 'thumbor_ceph.storages.ceph_storage'
CEPH_STORAGE_POOL = 'thumbor'

#################################### Upload ####################################
UPLOAD_PHOTO_STORAGE = 'thumbor_ceph.storages.ceph_storage'

################################ Result Storage ################################
RESULT_STORAGE = 'thumbor_ceph.result_storages.ceph_storage'
CEPH_RESULT_STORAGE_POOL = 'thumbor'

For monitors and keys, the values ​​used are those defined in the
configuration file ceph.conf.

thumbor_spaces [https://github.com/siddhartham/thumbor_spaces] (by Siddhartha Mukherjee [https://github.com/siddhartham])

This plugin allows users to store objects in the DigitalOcean Spaces for
result storage.

	URL: https://github.com/siddhartham/thumbor_spaces

	Installing: pip install thumbor_spaces

Using it is simple, just change your configuration in thumbor.conf:

Use DigitalOcean Spaces for result storage.
For more info on result storage: https://github.com/thumbor/thumbor/wiki/Result-storage
RESULT_STORAGE = 'thumbor_spaces.result_storages.spaces_storage'

SPACES_REGION='xxx'

SPACES_ENDPOINT='xxx'

SPACES_KEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

SPACES_SECRET='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

SPACES_BUCKET='your-bucket-name'

Metrics

thumbor_prometheus [https://github.com/thumbor-community/prometheus] (by Simon Effenberg [https://github.com/savar])

Prometheus [https://prometheus.io/] a monitoring and alerting toolkit.

This module provide support for Prometheus as metrics collector.

	URL: https://github.com/thumbor-community/prometheus

	Installing:
pip install tc_prometheus

Configuration in thumbor.conf:

################################# Extensibility #################################
METRICS = 'tc_prometheus.metrics.prometheus_metrics'

optional with defaults
PROMETHEUS_SCRAPE_PORT = 8000 # Port the prometheus client should listen on

Extensions

thumborshortener [https://github.com/thumbor-community/shortener] (by Thumbor Community [https://github.com/thumbor-community])

Thumbor [https://github.com/thumbor/thumbor/wiki] is a smart
imaging service. It enables on-demand crop, resizing and flipping of
images.

This module provides URL shortening capabilities for Thumbor. It will create an API that can shorten a thumbor URL, and then routing capabilities to reroute the shortened URL to the correct image.

The shortened URL / real URL mapping is stored within redis.

	URL: https://github.com/thumbor-community/shortener

	Installing: pip install tc_shortener

To get exhaustive details about configuration options & setting it up, go to the documentation of the plugin [http://thumbor-shortener.readthedocs.io/en/latest/].

Engines

thumbor-video-engine [https://github.com/theatlantic/thumbor-video-engine] (by The Atlantic [https://github.com/theatlantic])

This engine extends thumbor so that it can read, crop, and transcode
audio-less video files using FFmpeg. It supports input and output of animated
GIF, animated WebP, WebM (VP9) video, and MP4 (H.264 and H.265).

	URL: https://github.com/theatlantic/thumbor-video-engine

	Installing: pip install thumbor-video-engine

Configuration in thumbor.conf:

ENGINE = 'thumbor_video_engine.engines.video'
FILTERS = [
 # Enables transcoding between video formats (in addition to the image
 # formats already supported by thumbor.filters.format)
 'thumbor_video_engine.filters.format',
 # Allows outputting a still frame from a video as an image
 'thumbor_video_engine.filters.still',
]

optional, if you are already using a custom image engine
IMAGING_ENGINE = 'opencv_engine'

For a full list of configuration options and filters, read
the project’s documentation [https://thumbor-video-engine.readthedocs.io/].

Libraries

Even though the process of generating safe image URLs is explained in
the Security page, we’ll try to provide libraries in each
programming language to ease this process.

Available Libraries

Python

	libthumbor [https://github.com/heynemann/libthumbor] - Python’s
extensions to thumbor. These are used to generate safe urls among
others.

	django-thumbor [https://github.com/ricobl/django-thumbor] - A
django app with templatetags for resizing images with thumbor (by
ricobl [https://github.com/ricobl]).

	django-thumborstorage [https://github.com/Starou/django-thumborstorage]
- A Django custom storage for Thumbor backend (by Stanislas
Guerra [https://github.com/Starou]).

Node.js

	ThumborJS [https://github.com/rafaelcaricio/ThumborJS] -
Javascript’s extension to thumbor. These are used to generate safe
urls, encrypted urls among others (by Rafael
Carício [https://github.com/rafaelcaricio]).

	ThumborUrlBuilder [https://github.com/dcaramelo/ThumborUrlBuilder]
- Thumbor client for Node JS (by David
Caramelo [https://github.com/dcaramelo]).

	thumbor [https://github.com/policymic/thumbor] - Thumbor client
for Node JS (by PolicyMic [https://github.com/PolicyMic]).

Ruby

	ruby-thumbor [https://rubygems.org/gems/ruby-thumbor] - Ruby’s
gem to interact with thumbor server.

	thumbor_rails [https://github.com/rafaelcaricio/thumbor_rails] -
Ruby’s gem to make easier to generate urls in Rails projects.

Java

	Pollexor [http://square.github.com/pollexor] - Java client for
the Thumbor image service which allows you to build URIs in an
expressive fashion using a fluent API.

	thumbor-enterprise-edition [https://github.com/heynemann/thumbor-enterprise-edition]
- Java library to enable generating encrypted URLs. This library is
deprecated in favor of
Pollexor [http://square.github.com/pollexor].

PHP

	Thumbor-PHP [https://github.com/beeyev/thumbor-php] - PHP implementation of URL generator for Thumbor. It also supports Laravel Framework.

	Phumbor [https://github.com/99designs/phumbor] - A minimal PHP
client for generating Thumbor URLs.

	Phumbor for Laravel [https://github.com/ceejayoz/laravel-phumbor]
- A Laravel package providing a facade for Phumbor.

	Phumbor for Symfony2 [https://github.com/jbouzekri/PhumborBundle]
- A Symfony2 Bundle providing a facade for Phumbor.

Swift

	Bumbo [https://github.com/guilhermearaujo/Bumbo] - A swifty client
for Thumbor

Objective-C

	OCThumbor [https://github.com/DanielHeckrath/OCThumbor] -
Objective-C for the Thumbor image service which allows you to build
URIs in an expressive fashion using a fluent API.

.NET

	DotNetThumbor [https://github.com/mi9/DotNetThumbor] - DotNet client for the Thumbor image service.
Provides an expressive fluent API.

Delphi

	DelphiThumbor [https://github.com/marlonnardi/DelphiThumbor] - Delphi class to thumbor. These are used to generate safe urls among others (by Marlon Nardi [https://github.com/marlonnardi]).

Implementing a library

If you want to provide a library to enable easy usage of thumbor in your
favorite programming language, please send an e-mail to
thumbor@googlegroups.com and we’ll add it here.

Below are all the scenarios we think are worth testing automatically so
you can guarantee compatibility with thumbor. Please note that this is
not meant to be a replacement for TDD or for any other testing
methodology you might want to use. These are just helper scenarios that
we thought would help any library developers.

Library Tests - Generating HMAC of the URLs

We sincerely advise you to have thumbor installed in your machine, so
you can implement a method in your tests that has thumbor generate a
signature for your URL so you can compare with your own signature. This
way you can make sure your url formatting and signing are working
properly.

Here’s how it was implemented in Ruby:

def sign_in_thumbor(key, str)
 #bash command to call thumbor's decrypt method
 command = "python3 -c 'from libthumbor.url_signers.base64_hmac_sha1 import UrlSigner; signer = UrlSigner(\"" << key << "\"); print(signer.signature(\"" << str << "\").decode(\"utf-8\"))'"

 #execute it in the shell using ruby's popen mechanism
 result = Array.new
 IO.popen(command) { |f| result.push(f.gets) }

 result.join('')
end

You should be able to implement this easily in any modern programming
language. It makes for very reliable tests.

Library Tests - Scenarios

Remember that these are in pseudo-code (BDD-like) language, and not in
any programming language specifically.

Encryption Testing

These scenarios assume that you separate the logic of composing the url
to be signed into a different “module”, that is to be tested with the
URL Testing Scenarios after these scenarios.

Scenario 1 - Signing of a known url results

Given
 A security key of 'my-security-key'
 And an image URL of "my.server.com/some/path/to/image.jpg"
 And a width of 300
 And a height of 200
When
 I ask my library for a signed url
Then
 I get '/8ammJH8D-7tXy6kU3lTvoXlhu4o=/300x200/my.server.com/some/path/to/image.jpg' as url

Scenario 2 - Thumbor matching of signature with my library signature

Given
 A security key of 'my-security-key'
 And an image URL of "my.server.com/some/path/to/image.jpg"
 And a width of 300
 And a height of 200
When
 I ask my library for an encrypted URL
Then
 I get the proper url (/8ammJH8D-7tXy6kU3lTvoXlhu4o=/300x200/my.server.com/some/path/to/image.jpg)

Scenario 3 - Thumbor matching of signature with my library signature with meta

Given
 A security key of 'my-security-key'
 And an image URL of "my.server.com/some/path/to/image.jpg"
 And the meta flag
When
 I ask my library for an encrypted URL
Then
 I get the proper url (/Ps3ORJDqxlSQ8y00T29GdNAh2CY=/meta/my.server.com/some/path/to/image.jpg)

Scenario 4 - Thumbor matching of signature with my library signature with smart

Given
 A security key of 'my-security-key'
 And an image URL of "my.server.com/some/path/to/image.jpg"
 And the smart flag
When
 I ask my library for an encrypted URL
Then
 I get the proper url (/-2NHpejRK2CyPAm61FigfQgJBxw=/smart/my.server.com/some/path/to/image.jpg)

Scenario 5 - Thumbor matching of signature with my library signature with fit-in

Given
 A security key of 'my-security-key'
 And an image URL of "my.server.com/some/path/to/image.jpg"
 And the fit-in flag
When
 I ask my library for an encrypted URL
Then
 I get the proper url (/uvLnA6TJlF-Cc-L8z9pEtfasO3s=/fit-in/my.server.com/some/path/to/image.jpg)

Scenario 6 - Thumbor matching of signature with my library signature with filters

Given
 A security key of 'my-security-key'
 And an image URL of "my.server.com/some/path/to/image.jpg"
 And a 'quality(20)' filter
 And a 'brightness(10)' filter
When
 I ask my library for an encrypted URL
Then
 I get the proper url (/ZZtPCw-BLYN1g42Kh8xTcRs0Qls=/filters:brightness(10):contrast(20)/my.server.com/some/path/to/image.jpg)

You should test the same kind of tests for horizontal and vertical flip,
horizontal and vertical alignment and manual cropping.

More Information

	Security

Administration

	Configuration
	Override config through environment variable

	Extensibility Section

	Filters Section

	Metadata Section

	Face and Feature Detection Section

	Imaging Section

	Queueing - Redis Single Node

	Queueing - Redis Sentinel

	Queueing - Amazon SQS

	Security Section

	Loader Options Section

	Storage Options Section

	File Storage Section

	Result Storage Section

	Healthcheck

	Logging

	Error Handling

	Error Handling - Sentry

	Upload

	Example of Configuration File

	Automated Error Handling
	Enabling Custom Error Handling

	Sentry - thumbor.error_handlers.sentry

	Hosting
	Development Environment

	Production Environment

	Thumbor in the Cloud

	Thumbor on OpenShift

	Thumbor behind CloudFront

	Logging
	Configuring log format

	Running thumbor server
	-i or –ip

	-p or –port

	-c or –conf

	-k or –keyfile

	-l or –log-level

	–processes

	-a or –app

	Image Metadata
	Reading and writing Metadata

	piexif API reference

	Security
	URL Tampering

	Loading Images over HTTPS

	Libraries

Configuration

thumbor’s configuration file is just a regular python script that
gets loaded by thumbor.

In order to get a commented configuration file, just run:

thumbor-config > ./thumbor.conf

Override config through environment variable

It is possible override string configs through environment variables.
This is possible because thumbor uses derpconf [https://github.com/globocom/derpconf]
to abstract loading configuration and derpconf allows this.

Extensibility Section

LOADER

The loader is responsible for retrieving the source image that thumbor
will work with. This configuration defines the module that thumbor will
use for it. This must be a full namespace module (a.k.a. python has to
be able to *import* it).

LOADER = 'thumbor.loaders.http_loader'

STORAGE

The storage is responsible for storing the source image bytes and
related metadata (face-detection, encryption and such) so that we don’t
keep loading it every time. This must be a full namespace module
(a.k.a. python has to be able to *import* it).

STORAGE = 'thumbor.storages.file_storage'

MIXED_STORAGE_FILE_STORAGE

If you are using thumbor’s mixed storage
(thumbor.storages.mixed_storage), this is where you specify the storage
that will be used to store images. This must be a full namespace
module (a.k.a. python has to be able to *import* it).

MIXED_STORAGE_FILE_STORAGE = 'thumbor.storages.file_storage'

MIXED_STORAGE_CRYPTO_STORAGE

If you are using thumbor’s mixed storage
(thumbor.storages.mixed_storage), this is where you specify the storage
that will be used to store cryptography information. This must be a
full namespace module (a.k.a. python has to be able to *import* it).

MIXED_STORAGE_CRYPTO_STORAGE = 'thumbor.storages.file_storage'

MIXED_STORAGE_DETECTOR_STORAGE

If you are using thumbor’s mixed storage
(thumbor.storages.mixed_storage), this is where you specify the storage
that will be used to store facial and feature detection results. This
must be a full namespace module (a.k.a. python has to be able to
import it).

MIXED_STORAGE_DETECTOR_STORAGE = 'thumbor.storages.file_storage'

RESULT_STORAGE

The result storage is responsible for storing the resulting image with
the specified parameters (think of it as a cache), so that we don’t keep
processing it every time a request comes in. This must be a full
namespace module (a.k.a. python has to be able to *import* it).

RESULT_STORAGE = 'thumbor.result_storages.file_storage'

ENGINE

The engine is responsible for transforming the image. This must be a
full namespace module (a.k.a. python has to be able to *import* it).

Currently, thumbor ships with only the thumbor.engines.pil imaging engine. A few years ago we conducted a comparison between the engines and there was no clear winner. Given PIL was the engine we were using at the time, we decided to stick with it. Other open source engines exist and you can find more about them in the plug-in section of the docs.

ENGINE = 'thumbor.engines.pil'

URL_SIGNER

The url signer is responsible for validation and signing of requests to prevent url tampering,
which could lead to denial of service (example: filling the result_storage by specifying a different size).
This must be a full namespace module (a.k.a. python has to be able to *import* it).

URL_SIGNER = 'libthumbor.url_signers.base64_hmac_sha1'

Filters Section

In order to specify the filters that thumbor will use, you need a
configuration key called FILTERS. This is a regular python list with the
full names (names that python can import) of the filter modules you want
to use.

i.e.:

FILTERS = [
 'thumbor.filters.brightness',
 'thumbor.filters.contrast',
 'thumbor.filters.rgb',
 'thumbor.filters.round_corner',
 'thumbor.filters.quality',
 'thumbor.filters.noise',
 'thumbor.filters.watermark',
]

Metadata Section

META_CALLBACK_NAME

If you want thumbor to use JSONP for image metadata instead of using
JSON, just set this variable to the callback name you want.

META_CALLBACK_NAME = 'thumbor_callback' # Or None for no callback

Face and Feature Detection Section

DETECTORS

This options specifies the detectors that should run the image to check
for focal points.

i.e.:

 DETECTORS = [
 'thumbor.detectors.face_detector',
 'thumbor.detectors.feature_detector'
]

Cascade Files

This option specifies the cascade (XML) file paths to train openCV to
find faces or other objects.

The cascade file that opencv will use to detect faces.
FACE_DETECTOR_CASCADE_FILE = 'haarcascade_frontalface_alt.xml'

The cascade file that opencv will use to detect glasses.
GLASSES_DETECTOR_CASCADE_FILE = 'haarcascade_eye_tree_eyeglasses.xml'

The cascade file that opencv will use to detect profile faces.
PROFILE_DETECTOR_CASCADE_FILE = 'haarcascade_profileface.xml'

Imaging Section

ALLOWED_SOURCES

This configuration defines the source of the images that thumbor will
load. This is only used in the HttpLoader (check the LOADER
configuration above).

ALLOWED_SOURCES=['http://s.glbimg.com']

Another example with wildcards:

ALLOWED_SOURCES=['.+\.globo\.com', '.+\.glbimg\.com']

This is to get any images that are in *.globo.com or *.glbimg.com and it
will fail with any other domains.

ACCESS_CONTROL_ALLOW_ORIGIN_HEADER

This allows to send the ACCESS_CONTROL_ALLOW_ORIGIN header. For example,
if you want to tell the browser to allow code from any origin to
access your thumbor resources:

ACCESS_CONTROL_ALLOW_ORIGIN_HEADER = '*'

If you want restrict access to a certain resource:

ACCESS_CONTROL_ALLOW_ORIGIN_HEADER = 'https://www.example.com'

Not set by default.

MAX_WIDTH and MAX_HEIGHT

These define the box that the resulting image for thumbor must fit-in.
This means that no image that thumbor generates will have a width larger
than MAX_WIDTH or height larger than MAX_HEIGHT. It defaults to 0, which
means there is not limit. If the original image is larger than
MAX_WIDTH x MAX_HEIGHT, it is proportionally resized to MAX_WIDTH x MAX_HEIGHT.

MAX_WIDTH = 1200
MAX_HEIGHT = 800

MIN_WIDTH and MIN_HEIGHT

These define the box that the resulting image for thumbor must fit-in.
This means that no image that thumbor generates will have a width
smaller than MIN_WIDTH or height smaller than MIN_HEIGHT. It defaults to 1.
If the original image is smaller than MIN_WIDTH x MIN_HEIGHT, it is
proportionally resized to MIN_WIDTH x MIN_HEIGHT.

MIN_WIDTH = 1
MIN_HEIGHT = 1

QUALITY

This option defines the quality that JPEG images will be generated with.
It defaults to 80.

QUALITY = 90

MAX_AGE

This option defines the number of seconds that images should remain in
the browser’s cache. It relates directly with the Expires and
Cache-Control headers.

MAX_AGE = 24 * 60 * 60 # A day of caching

MAX_AGE_TEMP_IMAGE

When an image has some error in its detection or it has deferred
queueing, it’s convenient to set a much lower expiration time for the
image cache. This way the browser will request the proper image faster.

This option defines the number of seconds that images in this scenario
should remain in the browser’s cache. It relates directly with the
Expires and Cache-Control headers.

MAX_AGE_TEMP_IMAGE = 60 # A minute of caching

RESPECT_ORIENTATION

If this option is set to True, thumbor will reorient the image according
to it’s EXIF Orientation tag (if one can be found). This options
defaults to False.

The operations performed in the image are as follow (considering the
value of the Orientation EXIF tag):

	Nothing

	Flips the image horizontally

	Rotates the image 180 degrees

	Flips the image vertically

	Flips the image vertically and rotates 270 degrees

	Rotates the image 270 degrees

	Flips the image horizontally and rotates 270 degrees

	Rotates the image 90 degrees

RESPECT_ORIENTATION = False

ALLOW_ANIMATED_GIFS

This option indicates whether animated gifs should be supported.

ALLOW_ANIMATED_GIFS = True

USE_GIFSICLE_ENGINE

This option indicates whether
gifsicle [http://www.lcdf.org/gifsicle/man.html] should be used for
all gif images, instead of the actual imaging engine. This defaults to
False.

When using gifsicle thumbor will generate proper animated gifs, as
well as static gifs with the smallest possible size.

USE_GIFSICLE_ENGINE = True

WARNING: When using gifsicle engine, filters will be skipped, except for cover() filter. thumbor
will not do smart cropping as well.

AUTO_*

These configurations indicates that thumbor will try to automatically convert
the image format to a lighter image format, according to this compression order:
WEBP, AVIF, JPG, HEIF — from highest (WEBP) to lowest (HEIF) priority.

AUTO_WEBP

This option indicates whether thumbor should send WebP images
automatically if the request comes with an “Accept” header that
specifies that the browser supports “image/webp”.

AUTO_WEBP = True

AUTO_AVIF

This option indicates whether thumbor should send Avif images
automatically if the request comes with an “Accept” header that
specifies that the browser supports “image/avif” and pillow-avif-plugin is enabled.

AUTO_AVIF = True

AUTO_PNG_TO_JPG

This option indicates whether thumbor should transform PNG images
automatically to JPEG. If the image is a PNG without transparency and
the numpy dependency is installed, thumbor will transform from png to jpeg.
In the most of cases the image size will decrease.

WARNING: Depending on case, this is not a good deal. This transformation
maybe causes distortions or the size of image can increase.
Images with texts, for example, the result image maybe will be distorted.
Dark images, for example, the size of result image maybe will be bigger.
You have to evaluate the majority of your use cases to take a decision about the usage of this conf.

AUTO_PNG_TO_JPG = True

AUTO_JPG

This option indicates whether thumbor should send JPG images
automatically if the request comes with an “Accept” header that
specifies that the browser supports “/”, “image/jpg” or “image/jpeg”.

AUTO_JPG = True

AUTO_HEIF

This option indicates whether thumbor should send Heif images
automatically if the request comes with an “Accept” header that
specifies that the browser supports “image/heif” and pillow-heif is enabled.

AUTO_HEIF = True

Queueing - Redis Single Node

REDIS_QUEUE_MODE

Redis operation mode ‘single_node’ or ‘sentinel’

REDIS_QUEUE_MODE = 'single_node'

REDIS_QUEUE_SERVER_HOST

Server host for the queued redis detector.

REDIS_QUEUE_SERVER_HOST = 'localhost'

REDIS_QUEUE_SERVER_PORT

Server port for the queued redis detector.

REDIS_QUEUE_SERVER_PORT = 6379

REDIS_QUEUE_SERVER_DB

Server database index for the queued redis detector

REDIS_QUEUE_SERVER_DB = 0

REDIS_QUEUE_SERVER_PASSWORD

Server password for the queued redis detector

REDIS_QUEUE_SERVER_PASSWORD = None

Queueing - Redis Sentinel

REDIS_QUEUE_MODE

Redis operation mode ‘single_node’ or ‘sentinel’

REDIS_QUEUE_MODE = 'sentinel'

REDIS_QUEUE_SENTINEL_INSTANCES

Sentinel server instances for the queued redis detector.

REDIS_QUEUE_SENTINEL_INSTANCES = 'localhost:23679,localhost:23680'

REDIS_QUEUE_SENTINEL_PASSWORD

Sentinel server password for the queued redis detector.

REDIS_QUEUE_SENTINEL_PASSWORD = None

REDIS_QUEUE_SENTINEL_MASTER_INSTANCE

Sentinel server master instance for the queued redis detector.

REDIS_QUEUE_SENTINEL_MASTER_INSTANCE = 'masterinstance'

REDIS_QUEUE_SENTINEL_MASTER_PASSWORD

Sentinel server master password for the queued redis detector.

REDIS_QUEUE_SENTINEL_MASTER_PASSWORD = None

REDIS_QUEUE_SENTINEL_MASTER_DB

Sentinel server master database index for the queued redis detector.

REDIS_QUEUE_SENTINEL_MASTER_DB = 0

REDIS_QUEUE_SENTINEL_SOCKET_TIMEOUT

Sentinel server socket timeout for the queued redis detector.

REDIS_QUEUE_SENTINEL_SOCKET_TIMEOUT = 10.0

Queueing - Amazon SQS

This queue will be removed in an upcoming release in favor of the open source AWS plug-ins for thumbor.

SQS_QUEUE_KEY_ID

Amazon AWS key id.

SQS_QUEUE_KEY_ID = None

SQS_QUEUE_KEY_SECRET

Amazon AWS key secret.

SQS_QUEUE_KEY_SECRET = None

SQS_QUEUE_REGION

Amazon AWS SQS region.

SQS_QUEUE_REGION = 'us-east-1'

Security Section

SECURITY_KEY

This option specifies the security key that thumbor uses to sign secure
URLs.

1234567890123456

ALLOW_UNSAFE_URL

This option specifies that the /unsafe url should be available in this
thumbor instance. It is boolean (True or False).

Warning

It is STRONGLY recommended that you turn off this flag in production environments as this can lead to DDoS attacks against thumbor.

ALLOW_UNSAFE_URL = False

Loader Options Section

FILE_LOADER_ROOT_PATH

In case you are using thumbor’s built-in file loader, this is the option
that allows you to specify where to find the images.

FILE_LOADER_ROOT_PATH = "/home/thumbor/images"

HTTP_LOADER_DEFAULT_USER_AGENT

This option allows users to specify the default user-agent that thumbor
will send when requesting images with the HTTP Loader. Defaults to
‘thumbor/’ (like thumbor/7.0.0).

HTTP_LOADER_DEFAULT_USER_AGENT = 'thumbor/7.0.0'

HTTP_LOADER_FORWARD_USER_AGENT

This option tells thumbor to forward the request user agent when
requesting images using the HTTP Loader. Defaults to False.

HTTP_LOADER_FORWARD_USER_AGENT = False

Storage Options Section

STORAGE_EXPIRATION_SECONDS

This options specifies the default expiration time in seconds for the
storage.

STORAGE_EXPIRATION_SECONDS = 60 # 1 minute

STORES_CRYPTO_KEY_FOR_EACH_IMAGE

This option specifies whether thumbor should store the key for each
image (thus allowing the image to be found even if the security key
changes). This is a boolean flag (True or False).

Warning

If this flag is set to False, it essentially means that whenever you change the security key, for whatever reason, you just invalidated every single image that’s been generated before.

That may be ok if you have another service fetching stored images instead of allowing thumbor to do it (as many of thumbor users do).

STORAGE_CRYPTO_KEY_FOR_EACH_IMAGE = True

File Storage Section

FILE_STORAGE_ROOT_PATH

In case you are using thumbor’s built-in file storage, this is the
option that allows you to specify where to save the images.

FILE_STORAGE_ROOT_PATH = '/home/thumbor/storage'

Result Storage Section

RESULT_STORAGE_EXPIRATION_SECONDS

Expiration in seconds of generated images in the result storage.

RESULT_STORAGE_EXPIRATION_SECONDS = 0

RESULT_STORAGE_FILE_STORAGE_ROOT_PATH

Path where the Result storage will store generated images.

RESULT_STORAGE_FILE_STORAGE_ROOT_PATH = '/tmp/thumbor/result_storage'

RESULT_STORAGE_STORES_UNSAFE

Indicates whether unsafe requests should also be stored in the Result
Storage.

RESULT_STORAGE_STORES_UNSAFE = False

Healthcheck

HEALTHCHECK_ROUTE

The URL path to a healthcheck. This will return a 200 and the text ‘WORKING’.

HEALTHCHECK_ROUTE = '/status'

Will put the healthcheck response on http://host:port/status

The default route is /healthcheck.

Logging

THUMBOR_LOG_FORMAT

This option specifies the format to be used by logging messages sent
from thumbor.

THUMBOR_LOG_FORMAT = '%(asctime)s %(name)s:%(levelname)s %(message)s'

THUMBOR_LOG_DATE_FORMAT

This option specifies the date format to be used by logging messages
sent from thumbor.

THUMBOR_LOG_DATE_FORMAT = '%Y-%m-%d %H:%M:%S'

Error Handling

USE_CUSTOM_ERROR_HANDLING

This configuration indicates whether thumbor should use a custom error
handler.

USE_CUSTOM_ERROR_HANDLING = False

ERROR_HANDLER_MODULE

Error reporting module. Needs to contain a class called ErrorHandler
with a handle_error(context, handler, exception) method.

ERROR_HANDLER_MODULE = 'thumbor.error_handlers.sentry'

Error Handling - Sentry

SENTRY_DSN_URL

Sentry thumbor project dsn. i.e.:
http://5a63d58ae7b94f1dab3dee740b301d6a:73eea45d3e8649239a973087e8f21f98@localhost:9000/2

SENTRY_DSN_URL = ''

SENTRY_ENVIRONMENT

Sentry thumbor environment.

SENTRY_ENVIRONMENT = 'staging'

Upload

UPLOAD_MAX_SIZE

Max size in bytes for images uploaded to thumbor.

UPLOAD_MAX_SIZE = 0

UPLOAD_ENABLED

Indicates whether thumbor should enable File uploads.

UPLOAD_ENABLED = False

UPLOAD_PHOTO_STORAGE

The type of storage to store uploaded images with.

UPLOAD_PHOTO_STORAGE = 'thumbor.storages.file_storage'

UPLOAD_DELETE_ALLOWED

Indicates whether image deletion should be allowed.

UPLOAD_DELETE_ALLOWED = False

UPLOAD_PUT_ALLOWED

Indicates whether image overwrite should be allowed.

UPLOAD_PUT_ALLOWED = False

UPLOAD_DEFAULT_FILENAME

Default filename for image uploaded.

UPLOAD_DEFAULT_FILENAME = 'image'

GC_INTERVAL

Set manual garbage collection interval in seconds. Defaults to None (no manual garbage collection). Try this if your thumbor is running out of memory. May cause an increase in CPU load.

GC_INTERVAL = 60

Example of Configuration File

################################### Logging ####################################

Logging configuration as json
Defaults to: None
#THUMBOR_LOG_CONFIG = None

Log Format to be used by thumbor when writing log messages.
Defaults to: '%(asctime)s %(name)s:%(levelname)s %(message)s'
#THUMBOR_LOG_FORMAT = '%(asctime)s %(name)s:%(levelname)s %(message)s'

Date Format to be used by thumbor when writing log messages.
Defaults to: '%Y-%m-%d %H:%M:%S'
#THUMBOR_LOG_DATE_FORMAT = '%Y-%m-%d %H:%M:%S'

##

################################### Imaging ####################################

Max width in pixels for images read or generated by thumbor
Defaults to: 0
#MAX_WIDTH = 0

Max height in pixels for images read or generated by thumbor
Defaults to: 0
#MAX_HEIGHT = 0

Max pixel count for images read by thumbor
Defaults to: 75000000.0
#MAX_PIXELS = 75000000.0

Min width in pixels for images read or generated by thumbor
Defaults to: 1
#MIN_WIDTH = 1

Min width in pixels for images read or generated by thumbor
Defaults to: 1
#MIN_HEIGHT = 1

Allowed domains for the http loader to download. These are regular
expressions.
Defaults to: [
#]

#ALLOWED_SOURCES = [
#]

Quality index used for generated JPEG images
Defaults to: 80
#QUALITY = 80

Exports JPEG images with the `progressive` flag set.
Defaults to: True
#PROGRESSIVE_JPEG = True

Specify subsampling behavior for Pillow (see `subsampling` in
http://pillow.readthedocs.org/en/latest/handbook/image-file-
formats.html#jpeg).Be careful to use int for 0,1,2 and string for "4:4:4"
notation. Will ignore `quality`. Using `keep` will copy the original file's
subsampling.
Defaults to: None
#PILLOW_JPEG_SUBSAMPLING = None

Specify quantization tables for Pillow (see `qtables` in
http://pillow.readthedocs.org/en/latest/handbook/image-file-
formats.html#jpeg). Will ignore `quality`. Using `keep` will copy the
original file's qtables.
Defaults to: None
#PILLOW_JPEG_QTABLES = None

Specify resampling filter for Pillow resize method.One of LANCZOS, NEAREST,
BILINEAR, BICUBIC, HAMMING (Pillow>=3.4.0).
Defaults to: 'LANCZOS'
#PILLOW_RESAMPLING_FILTER = 'LANCZOS'

Quality index used for generated WebP images. If not set (None) the same level
of JPEG quality will be used. If 100 the `lossless` flag will be used.
Defaults to: None
#WEBP_QUALITY = None

Compression level for generated PNG images.
Defaults to: 6
#PNG_COMPRESSION_LEVEL = 6

Indicates if final image should preserve indexed mode (P or 1) of original
image
Defaults to: True
#PILLOW_PRESERVE_INDEXED_MODE = True

Specifies whether WebP format should be used automatically if the request
accepts it (via Accept header)
Defaults to: False
#AUTO_WEBP = False

Specifies whether a PNG image should be used automatically if the png image
has no transparency (via alpha layer). WARNING: Depending on case, this is
not a good deal. This transformation maybe causes distortions or the size
of image can increase. Images with texts, for example, the result image
maybe will be distorted. Dark images, for example, the size of result image
maybe will be bigger. You have to evaluate the majority of your use cases
to take a decision about the usage of this conf.
Defaults to: False
#AUTO_PNG_TO_JPG = False

Specify the ratio between 1in and 1px for SVG images. This is only used
whenrasterizing SVG images having their size units in cm or inches.
Defaults to: 150
#SVG_DPI = 150

Max AGE sent as a header for the image served by thumbor in seconds
Defaults to: 86400
#MAX_AGE = 86400

Indicates the Max AGE header in seconds for temporary images (images with
failed smart detection)
Defaults to: 0
#MAX_AGE_TEMP_IMAGE = 0

Indicates whether thumbor should rotate images that have an Orientation EXIF
header
Defaults to: False
#RESPECT_ORIENTATION = False

Ignore errors during smart detections and return image as a temp image (not
saved in result storage and with MAX_AGE_TEMP_IMAGE age)
Defaults to: False
#IGNORE_SMART_ERRORS = False

Sends If-Modified-Since & Last-Modified headers; requires support from result
storage
Defaults to: False
#SEND_IF_MODIFIED_LAST_MODIFIED_HEADERS = False

Sends the Access-Control-Allow-Origin header
#ACCESS_CONTROL_ALLOW_ORIGIN_HEADER = '*'

Preserves exif information in generated images. Increases image size in
kbytes, use with caution.
Defaults to: False
#PRESERVE_EXIF_INFO = False

Indicates whether thumbor should enable the EXPERIMENTAL support for animated
gifs.
Defaults to: True
#ALLOW_ANIMATED_GIFS = True

Indicates whether thumbor should use gifsicle engine. Please note that smart
cropping and filters are not supported for gifs using gifsicle (but won't
give an error).
Defaults to: False
#USE_GIFSICLE_ENGINE = False

Indicates whether thumbor should enable blacklist functionality to prevent
processing certain images.
Defaults to: False
#USE_BLACKLIST = False

Size of the thread pool used for image transformations. The default value is 0
(don't use a threadpoool. Increase this if you are seeing your IOLoop
getting blocked (often indicated by your upstream HTTP requests timing out)
Defaults to: 0
#ENGINE_THREADPOOL_SIZE = 0

##

################################# Extensibility #################################

The metrics backend thumbor should use to measure internal actions. This must
be the full name of a python module (python must be able to import it)
Defaults to: 'thumbor.metrics.logger_metrics'
#METRICS = 'thumbor.metrics.logger_metrics'

The loader thumbor should use to load the original image. This must be the
full name of a python module (python must be able to import it)
Defaults to: 'thumbor.loaders.http_loader'
#LOADER = 'thumbor.loaders.http_loader'

The file storage thumbor should use to store original images. This must be the
full name of a python module (python must be able to import it)
Defaults to: 'thumbor.storages.file_storage'
#STORAGE = 'thumbor.storages.file_storage'

The result storage thumbor should use to store generated images. This must be
the full name of a python module (python must be able to import it)
Defaults to: None
#RESULT_STORAGE = None

The imaging engine thumbor should use to perform image operations. This must
be the full name of a python module (python must be able to import it)
Defaults to: 'thumbor.engines.pil'
#ENGINE = 'thumbor.engines.pil'

The gif engine thumbor should use to perform image operations. This must be
the full name of a python module (python must be able to import it)
Defaults to: 'thumbor.engines.gif'
#GIF_ENGINE = 'thumbor.engines.gif'

The url signer thumbor should use to verify url signatures.This must be the
full name of a python module (python must be able to import it)
Defaults to: 'libthumbor.url_signers.base64_hmac_sha1'
#URL_SIGNER = 'libthumbor.url_signers.base64_hmac_sha1'

##

################################### Security ###################################

The security key thumbor uses to sign image URLs
Defaults to: 'MY_SECURE_KEY'
#SECURITY_KEY = 'MY_SECURE_KEY'

Indicates if the /unsafe URL should be available
Defaults to: True
#ALLOW_UNSAFE_URL = True

##

##################################### HTTP #####################################

Enables automatically generated etags
Defaults to: True
#ENABLE_ETAGS = True

##

################################### Storage ####################################

Set maximum id length for images when stored
Defaults to: 32
#MAX_ID_LENGTH = 32

##

################################# Performance ##################################

Set garbage collection interval in seconds
Defaults to: None
#GC_INTERVAL = None

##

################################# Healthcheck ##################################

Healthcheck route.
Defaults to: '/healthcheck'
#HEALTHCHECK_ROUTE = '/healthcheck'

##

################################### Metrics ####################################

Host to send statsd instrumentation to
Defaults to: None
#STATSD_HOST = None

Port to send statsd instrumentation to
Defaults to: 8125
#STATSD_PORT = 8125

Prefix for statsd
Defaults to: None
#STATSD_PREFIX = None

##

################################# File Loader ##################################

The root path where the File Loader will try to find images
Defaults to: '/home/heynemann'
#FILE_LOADER_ROOT_PATH = '/home/heynemann'

##

################################# HTTP Loader ##################################

The maximum number of seconds libcurl can take to connect to an image being
loaded
Defaults to: 5
#HTTP_LOADER_CONNECT_TIMEOUT = 5

The maximum number of seconds libcurl can take to download an image
Defaults to: 20
#HTTP_LOADER_REQUEST_TIMEOUT = 20

Indicates whether libcurl should follow redirects when downloading an image
Defaults to: True
#HTTP_LOADER_FOLLOW_REDIRECTS = True

Indicates the number of redirects libcurl should follow when downloading an
image
Defaults to: 5
#HTTP_LOADER_MAX_REDIRECTS = 5

The maximum number of simultaneous HTTP connections the loader can make before
queuing
Defaults to: 10
#HTTP_LOADER_MAX_CLIENTS = 10

Indicates whether thumbor should forward the user agent of the requesting user
Defaults to: False
#HTTP_LOADER_FORWARD_USER_AGENT = False

Indicates whether thumbor should forward the headers of the request
Defaults to: False
#HTTP_LOADER_FORWARD_ALL_HEADERS = False

Indicates which headers should be forwarded among all the headers of the
request
Defaults to: [
#]

#HTTP_LOADER_FORWARD_HEADERS_WHITELIST = [
#]

Default user agent for thumbor http loader requests
Defaults to: 'Thumbor/6.7.1'
#HTTP_LOADER_DEFAULT_USER_AGENT = 'Thumbor/6.7.1'

The proxy host needed to load images through
Defaults to: None
#HTTP_LOADER_PROXY_HOST = None

The proxy port for the proxy host
Defaults to: None
#HTTP_LOADER_PROXY_PORT = None

The proxy username for the proxy host
Defaults to: None
#HTTP_LOADER_PROXY_USERNAME = None

The proxy password for the proxy host
Defaults to: None
#HTTP_LOADER_PROXY_PASSWORD = None

The filename of CA certificates in PEM format
Defaults to: None
#HTTP_LOADER_CA_CERTS = None

Validate the server’s certificate for HTTPS requests
Defaults to: None
#HTTP_LOADER_VALIDATE_CERTS = None

The filename for client SSL key
Defaults to: None
#HTTP_LOADER_CLIENT_KEY = None

The filename for client SSL certificate
Defaults to: None
#HTTP_LOADER_CLIENT_CERT = None

If the CurlAsyncHTTPClient should be used
Defaults to: False
#HTTP_LOADER_CURL_ASYNC_HTTP_CLIENT = False

##

################################### General ####################################

If HTTP_LOADER_CURL_LOW_SPEED_LIMIT and HTTP_LOADER_CURL_ASYNC_HTTP_CLIENT are
set, then this is the time in seconds as integer after a download should
timeout if the speed is below HTTP_LOADER_CURL_LOW_SPEED_LIMIT for that
long
Defaults to: 0
#HTTP_LOADER_CURL_LOW_SPEED_TIME = 0

If HTTP_LOADER_CURL_LOW_SPEED_TIME and HTTP_LOADER_CURL_ASYNC_HTTP_CLIENT are
set, then this is the limit in bytes per second as integer which should
timeout if the speed is below that limit for
HTTP_LOADER_CURL_LOW_SPEED_TIME seconds
Defaults to: 0
#HTTP_LOADER_CURL_LOW_SPEED_LIMIT = 0

Custom app class to override ThumborServiceApp. This config value is
overridden by the -a command-line parameter.
Defaults to: 'thumbor.app.ThumborServiceApp'
#APP_CLASS = 'thumbor.app.ThumborServiceApp'

##

################################# File Storage #################################

Expiration in seconds for the images in the File Storage. Defaults to one
month
Defaults to: 2592000
#STORAGE_EXPIRATION_SECONDS = 2592000

Indicates whether thumbor should store the signing key for each image in the
file storage. This allows the key to be changed and old images to still be
properly found
Defaults to: False
#STORES_CRYPTO_KEY_FOR_EACH_IMAGE = False

The root path where the File Storage will try to find images
Defaults to: '/tmp/thumbor/storage'
#FILE_STORAGE_ROOT_PATH = '/tmp/thumbor/storage'

##

#################################### Upload ####################################

Max size in bytes for images uploaded to thumbor
Aliases: MAX_SIZE
Defaults to: 0
#UPLOAD_MAX_SIZE = 0

Indicates whether thumbor should enable File uploads
Aliases: ENABLE_ORIGINAL_PHOTO_UPLOAD
Defaults to: False
#UPLOAD_ENABLED = False

The type of storage to store uploaded images with
Aliases: ORIGINAL_PHOTO_STORAGE
Defaults to: 'thumbor.storages.file_storage'
#UPLOAD_PHOTO_STORAGE = 'thumbor.storages.file_storage'

Indicates whether image deletion should be allowed
Aliases: ALLOW_ORIGINAL_PHOTO_DELETION
Defaults to: False
#UPLOAD_DELETE_ALLOWED = False

Indicates whether image overwrite should be allowed
Aliases: ALLOW_ORIGINAL_PHOTO_PUTTING
Defaults to: False
#UPLOAD_PUT_ALLOWED = False

Default filename for image uploaded
Defaults to: 'image'
#UPLOAD_DEFAULT_FILENAME = 'image'

##

################################# Mixed Storage #################################

Mixed Storage file storage. This must be the full name of a python module
(python must be able to import it)
Defaults to: 'thumbor.storages.no_storage'
#MIXED_STORAGE_FILE_STORAGE = 'thumbor.storages.no_storage'

Mixed Storage signing key storage. This must be the full name of a python
module (python must be able to import it)
Defaults to: 'thumbor.storages.no_storage'
#MIXED_STORAGE_CRYPTO_STORAGE = 'thumbor.storages.no_storage'

Mixed Storage detector information storage. This must be the full name of a
python module (python must be able to import it)
Defaults to: 'thumbor.storages.no_storage'
#MIXED_STORAGE_DETECTOR_STORAGE = 'thumbor.storages.no_storage'

##

##################################### Meta #####################################

The callback function name that should be used by the META route for JSONP
access
Defaults to: None
#META_CALLBACK_NAME = None

##

################################### Detection ###################################

List of detectors that thumbor should use to find faces and/or features. All
of them must be full names of python modules (python must be able to import
it)
Defaults to: [
#]

#DETECTORS = [
#]

The cascade file that opencv will use to detect faces.
Defaults to: 'haarcascade_frontalface_alt.xml'
#FACE_DETECTOR_CASCADE_FILE = 'haarcascade_frontalface_alt.xml'

The cascade file that opencv will use to detect glasses.
Defaults to: 'haarcascade_eye_tree_eyeglasses.xml'
#GLASSES_DETECTOR_CASCADE_FILE = 'haarcascade_eye_tree_eyeglasses.xml'

The cascade file that opencv will use to detect profile faces.
Defaults to: 'haarcascade_profileface.xml'
#PROFILE_DETECTOR_CASCADE_FILE = 'haarcascade_profileface.xml'

##

################################## Optimizers ##################################

List of optimizers that thumbor will use to optimize images
Defaults to: [
#]

#OPTIMIZERS = [
#]

Path for the jpegtran binary
Defaults to: '/usr/bin/jpegtran'
#JPEGTRAN_PATH = '/usr/bin/jpegtran'

Path for the progressive scans file to use with jpegtran optimizer. Implies
progressive jpeg output
Defaults to: ''
#JPEGTRAN_SCANS_FILE = ''

Path for the ffmpeg binary used to generate gifv(h.264)
Defaults to: '/usr/local/bin/ffmpeg'
#FFMPEG_PATH = '/usr/local/bin/ffmpeg'

##

################################### Filters ####################################

List of filters that thumbor will allow to be used in generated images. All of
them must be full names of python modules (python must be able to import
it)
Defaults to: [
'thumbor.filters.brightness',
'thumbor.filters.colorize',
'thumbor.filters.contrast',
'thumbor.filters.rgb',
'thumbor.filters.round_corner',
'thumbor.filters.quality',
'thumbor.filters.noise',
'thumbor.filters.watermark',
'thumbor.filters.equalize',
'thumbor.filters.fill',
'thumbor.filters.sharpen',
'thumbor.filters.strip_exif',
'thumbor.filters.strip_icc',
'thumbor.filters.frame',
'thumbor.filters.grayscale',
'thumbor.filters.rotate',
'thumbor.filters.format',
'thumbor.filters.max_bytes',
'thumbor.filters.convolution',
'thumbor.filters.blur',
'thumbor.filters.extract_focal',
'thumbor.filters.focal',
'thumbor.filters.no_upscale',
'thumbor.filters.saturation',
'thumbor.filters.max_age',
'thumbor.filters.curve',
'thumbor.filters.background_color',
'thumbor.filters.upscale',
'thumbor.filters.proportion',
'thumbor.filters.stretch',
#]

#FILTERS = [
'thumbor.filters.brightness',
'thumbor.filters.colorize',
'thumbor.filters.contrast',
'thumbor.filters.rgb',
'thumbor.filters.round_corner',
'thumbor.filters.quality',
'thumbor.filters.noise',
'thumbor.filters.watermark',
'thumbor.filters.equalize',
'thumbor.filters.fill',
'thumbor.filters.sharpen',
'thumbor.filters.strip_exif',
'thumbor.filters.strip_icc',
'thumbor.filters.frame',
'thumbor.filters.grayscale',
'thumbor.filters.rotate',
'thumbor.filters.format',
'thumbor.filters.max_bytes',
'thumbor.filters.convolution',
'thumbor.filters.blur',
'thumbor.filters.extract_focal',
'thumbor.filters.focal',
'thumbor.filters.no_upscale',
'thumbor.filters.saturation',
'thumbor.filters.max_age',
'thumbor.filters.curve',
'thumbor.filters.background_color',
'thumbor.filters.upscale',
'thumbor.filters.proportion',
'thumbor.filters.stretch',
#]

##

################################ Result Storage ################################

Expiration in seconds of generated images in the result storage
Defaults to: 0
#RESULT_STORAGE_EXPIRATION_SECONDS = 0

Path where the Result storage will store generated images
Defaults to: '/tmp/thumbor/result_storage'
#RESULT_STORAGE_FILE_STORAGE_ROOT_PATH = '/tmp/thumbor/result_storage'

Indicates whether unsafe requests should also be stored in the Result Storage
Defaults to: False
#RESULT_STORAGE_STORES_UNSAFE = False

##

############################# Queued Redis Detector #############################

Server host for the queued redis detector
Defaults to: 'localhost'
#REDIS_QUEUE_SERVER_HOST = 'localhost'

Server port for the queued redis detector
Defaults to: 6379
#REDIS_QUEUE_SERVER_PORT = 6379

Server database index for the queued redis detector
Defaults to: 0
#REDIS_QUEUE_SERVER_DB = 0

Server password for the queued redis detector
Defaults to: None
#REDIS_QUEUE_SERVER_PASSWORD = None

##

############################# Queued SQS Detector ##############################

AWS key id
Defaults to: None
#SQS_QUEUE_KEY_ID = None

AWS key secret
Defaults to: None
#SQS_QUEUE_KEY_SECRET = None

AWS SQS region
Defaults to: 'us-east-1'
#SQS_QUEUE_REGION = 'us-east-1'

##

#################################### Errors ####################################

This configuration indicates whether thumbor should use a custom error
handler.
Defaults to: False
#USE_CUSTOM_ERROR_HANDLING = False

Error reporting module. Needs to contain a class called ErrorHandler with a
handle_error(context, handler, exception) method.
Defaults to: 'thumbor.error_handlers.sentry'
#ERROR_HANDLER_MODULE = 'thumbor.error_handlers.sentry'

File of error log as json
Defaults to: None
#ERROR_FILE_LOGGER = None

File of error log name is parametrized with context attribute
Defaults to: False
#ERROR_FILE_NAME_USE_CONTEXT = False

##

############################### Errors - Sentry ################################

Sentry thumbor project dsn. i.e.: http://5a63d58ae7b94f1dab3dee740b301d6a:73ee
a45d3e8649239a973087e8f21f98@localhost:9000/2
Defaults to: ''
#SENTRY_DSN_URL = ''

Sentry environment i.e.: staging
Defaults to: None
#SENTRY_ENVIRONMENT = None

##

#################################### Server ####################################

The amount of time to wait before shutting down the server, i.e. stop
accepting requests.
Defaults to: 0
#MAX_WAIT_SECONDS_BEFORE_SERVER_SHUTDOWN = 0

The amount of time to waut before shutting down all io, after the server has
been stopped
Defaults to: 0
#MAX_WAIT_SECONDS_BEFORE_IO_SHUTDOWN = 0

##

Automated Error Handling

For many companies it make a lot of sense to have a centralized solution
for handling errors in production, like
sentry [https://github.com/getsentry/sentry] or
squash [http://squash.io].

Thumbor must support this type of error handling in order to better
integrate itself to it’s users environments.

Enabling Custom Error Handling

Enabling it is as simple as setting the configuration
USE_CUSTOM_ERROR_HANDLING to True.

After that you need to set the custom error handler you want to use with
the ERROR_HANDLER_MODULE configuration. Please note that this is the
module full name, not the class full name.

Thumbor comes pre-packaged with sentry’s custom error handler:
thumbor.error_handlers.sentry. If you decide to use it, please read
below on how to configure it.

Sentry - thumbor.error_handlers.sentry

If you choose to use sentry custom error handler, all you need to do is
fill the SENTRY_DSN_URL configuration with sentry’s DSN URL, which
can be found in the admin page for your sentry project, like the one in
the image below:

[image: In Sentry, go to your project admin page, click Python.]

Hosting

Let’s see how would you run thumbor in different environments.

Development Environment

For running it locally you just need to get a proper Configuration
file. You can put it at /etc/thumbor.conf, ~/thumbor.conf (home folder)
or specify it when starting thumbor.

To verify if you have thumbor, just type:

thumbor --version

It should return the version you’ve installed. Starting thumbor is as
easy as:

thumbor

For more options check the Configuration page.

Production Environment

Other than having the proper Configuration file for your
environment, we have some recommendations on how to run thumbor in
production.

Our first recommendation is to run more than one instance of it. You can
specify different ports using thumbor easily. This will make sure that
your service stays responsive even if one of the processes die.

We also recommend having some form of load balance that distributes the
load between the aforementioned processes. We are using NGINX to do it,
but there are more sophisticated load balance softwares around. thumbor
supports health checking under the /healthcheck URI if you need to
use it.

Other than that, you run it using the thumbor console app specifying the
arguments, like this:

thumbor --port=8888 --conf="~/mythumbor.conf"

We recommend using an application such as Supervisor
(http://supervisord.org/index.html) to monitor your services. An
example of a supervisord.conf file would be:

[supervisord]
logfile = /home/thumbor/logs/supervisord.log
logfile_maxbytes = 50MB
logfile_backups=10
loglevel = info
pidfile = /home/thumbor/supervisord.pid
user = thumbor

[program:thumbor]
command=thumbor --port=800%(process_num)s --conf=/etc/thumbor800%(process_num)s.conf
process_name=thumbor800%(process_num)s
numprocs=4
user=thumbor
directory=/home/thumbor/
autostart=true
autorestart=true
startretries=3
stopsignal=TERM
stdout_logfile=/home/thumbor/logs/thumbor800%(process_num)s.stdout.log
stdout_logfile_maxbytes=1MB
stdout_logfile_backups=10
stderr_logfile=/home/thumbor/logs/thumbor800%(process_num)s.stderr.log
stderr_logfile_maxbytes=1MB
stderr_logfile_backups=10

This configuration file makes sure that supervisor starts 4 processes of
thumbor on the 8000, 8001, 8002 and 8003 ports, each with a different
configuration file (thumbor8000.conf, thumbor8001.conf,
thumbor8002.conf, thumbor8003.conf all under /etc folder). The other
settings are optional, but if you need help with supervisor’s settings
it has extensive documentation online
(http://supervisord.org/introduction.html).

Thumbor in the Cloud

Running with Docker

Running thumbor with docker is as easy as:

$ docker run -p 8888:80 minimalcompact/thumbor
...
$ curl http://localhost:8888/healthcheck
WORKING%

For more details check the MinimalCompact thumbor docker image [https://github.com/MinimalCompact/thumbor].

Thumbor on OpenShift

Warning

This may be outdated since thumbor moved to python 3.

There’s a project showing how to deploy a working version on
OpenShift [https://www.openshift.com/]
https://github.com/rafaelcaricio/thumbor-openshift-example

Thumbor behind CloudFront

Warning

This may be outdated since thumbor moved to python 3.

The awesome people at yipit [http://yipit.com] are using thumbor
behind the CloudFront
CDN [http://en.wikipedia.org/wiki/Content_delivery_network] at
Amazon.

The detailed information on how to do it can be seen at this blog
post [http://tech.yipit.com/2013/01/03/how-yipit-scales-thumbnailing-with-thumbor-and-cloudfront/].

Logging

thumbor uses the built-in Python logging mechanisms. In order to
configure log-level check the Running thumbor server page.

Configuring log format

Configuring the log format is as easy as including these keys in your
thumbor.conf file:

THUMBOR_LOG_FORMAT

Log Format to be used by thumbor when writing log messages.

Defaults to: %(asctime)s %(name)s:%(levelname)s %(message)s

THUMBOR_LOG_DATE_FORMAT

Date Format to be used by thumbor when writing log messages.

Defaults to: %Y-%m-%d %H:%M:%S

Running thumbor server

Running thumbor server is as easy as typing “thumbor” (considering you
went through the proper Installing procedures).

The Server application takes some parameters that will help you tailor
the thumbor Server to your needs. If you want to find out what the
thumbor Server arguments are, just type:

thumbor --help

-i or –ip

The address that Tornado will listen for incoming request. It defaults
to 0.0.0.0 (listening on localhost and current IP).

-p or –port

The port that Tornado will listen for incoming request. It defaults to
8888.

-c or –conf

The full path for the configuration file for this server.

-k or –keyfile

The full path for the file containing the security key to be used for
this server.

-l or –log-level

The log level to be used. Possible values are: debug, info,
warning, error, critical or notset. More on that at
http://docs.python.org/library/logging.html. It defaults to
warning.

–processes

Number of processes to run. By default equals 1 and means no forks created.
Set to 0 to detect the number of cores available on this machine.
Set > 1 to start that specified number of processes.

-a or –app

Allows the user to specify the application class to be used. This is a
very advanced usage of thumbor. This argument is specified like:
“namespace1.namespace2.class_name” as in
“myproj.thumbor_support.MyProjThumborApp”.

Signing thumbor urls

To help users create signed URLs (mostly for debugging purposes, since
we recommend using the Libraries), thumbor comes with an application
called thumbor-url.

In order to use it, type thumbor-url -h and it will present all
options available.

Image Metadata

Thumbor uses piexif [https://github.com/hMatoba/Piexif] to read and write image metadata.

The image metadata is available in engine.metadata.

Reading and writing Metadata

Let’s retrieve a list of all the available EXIF tags available in the image:

>>> engine.metadata
{
 '0th': {
 271: b'Canon',
 272: b'Canon EOS 5D Mark III',
 282: (300, 1),
 283: (300, 1),
 296: 2,
 305: b'Adobe Photoshop Lightroom 4.4 (Macintosh)',
 306: b'2016:06:24 14:45:44',
 34665: 216
 },
 'Exif': {
 33434: (1, 100),
 33437: (56, 10),
 34850: 1,
 34855: 640,
 34864: 2,
 34866: 640,
 36864: b'0230',
 36867: b'2016:06:23 13:18:05',
 36868: b'2016:06:23 13:18:05',
 37377: (6643856, 1000000),
 37378: (4970854, 1000000),
 37380: (0, 1),
 37381: (3, 1),
 37383: 5,
 37385: 16,
 37386: (123, 1),
 37521: b'91',
 37522: b'91',
 41486: (5242880, 32768),
 41487: (5242880, 32768),
 41488: 4,
 41985: 0,
 41986: 1,
 41987: 1,
 41990: 0,
 42033: b'042024004240',
 42034: ((70, 1), (200, 1), (0, 0), (0, 0)),
 42036: b'EF70-200mm f/2.8L IS II USM',
 42037: b'0000c139be'},
 'GPS': {},
 'Interop': {},
 '1st': {},
 'thumbnail': None
}

The reference to the values can be found here Exif values <https://github.com/hMatoba/Piexif/blob/master/piexif/_exif.py>

>>> tag = metadata["Exif"][piexif.ExifIFD.DateTimeOriginal]
"2016:06:23 13:18:05"

piexif API reference

Security

thumbor’s team is very concerned about security and vulnerabilities of
the service. Even though the team strives to cover most scenarios, if
you find any flaws or vulnerabilities, please contact the team or
create an issue [https://github.com/thumbor/thumbor/issues].

URL Tampering

Consider the following URL for an image:
http://some.server.com/unsafe/300x300/smart/path/to/image.jpg.

Now let’s say that some malicious user wants to overload your service.
He can easily ask for other sizes in loops or worse, like:

http://some.server.com/unsafe/300x301/smart/path/to/image.jpg
http://some.server.com/unsafe/300x302/smart/path/to/image.jpg
http://some.server.com/unsafe/300x303/smart/path/to/image.jpg
...
http://some.server.com/unsafe/300x9999/smart/path/to/image.jpg
...
http://some.server.com/unsafe/9999x9999/smart/path/to/image.jpg

And that’s not even counting varying the available options.

Other than that, the user can ask for images that do not exist, thus
forcing us to perform useless http GET operations or filesystem
operations.

We classified both scenarios above as URL Tampering.

Stopping Tampering

In order to prevent users from tampering with the URL, thumbor provides
a configuration called SECURITY_KEY. This is the key used to
generate a hash-based message authentication
code [http://en.wikipedia.org/wiki/Hash-based_message_authentication_code].

The process is very straightforward. The web server that has the page
using thumbor’s image generates an authentication code for the options
and image url, using the SECURITY_KEY.

When end-users access the page and thus load the image, thumbor
generates an authentication code for the same options and image url,
using the same SECURITY_KEY. If both authentication codes match,
thumbor processes it.

The secure endpoint looks like this:
/<authentication code with 28 characters>/300x200/smart/path/to/image.jpg.

HMAC method

We intend to supply toolkits in many languages that automate the signing
process, but we might need help from the community in this direction.

thumbor uses standard HMAC with SHA1 signing.

Let’s use as an example the url
http://some.server.com/unsafe/300x200/smart/path/to/image.jpg.

In order to convert that to a “safe” url, we must sign the part
300x200/smart/path/to/image.jpg:

	Generate a signature of that part using HMAC-SHA1 with the
SECURITY_KEY.

	Encode the signature as base64. thumbor uses
urlsafe_b64encode method of the native python’s base64 module.
This method replaces some characters in the base64 string so it
becomes more url friendly.

	Append the encoded_signature to the beginning of the URL, like:
/1234567890123456789012345678/300x200/smart/path/to/image.jpg.

That last part gives you the new url:
http://thumbor-server/1234567890123456789012345678/300x200/smart/path/to/image.jpg.
Notice that the url includes the options part 300x200/smart. That’s
required for thumbor to generate an authentication code to match the one
that signs the image (1234567890123456789012345678).

The code included in this documentation is illustrational and should
not be used for any purposes.

The description of the base64 method is:
reference [http://docs.python.org/library/base64.html]

base64.urlsafe_b64encode(s)
Encode string s using a URL-safe alphabet, which substitutes
- instead of + and _ instead of / in the standard Base64 alphabet.
The result can still contain =.

Loading Images over HTTPS

The default http_loader loads images by default over http. To change the
default to https, use the https_loader instead. To enforce https, use the
strict_https_loader. Check the Image loader page for more details.

Libraries

There are implementations of url generators in various languages, take a
look at the Libraries page to find information
about them.

Upload

Warning

The upload module will be removed from thumbor’s codebase soon and ported to an extension.

	How to upload Images
	Configuration

	API Usage

	Example

	Posting, Putting and Deleting
	Posting

	Putting

	Deleting

	Creating my own Storage

How to upload Images

Thumbor provides a /image REST end-point to upload your images and
manage it.

This way you can send thumbor your original images by doing a simple
post to its urls.

Configuration

The table below show all configuration parameters to manage image upload:

	Configuration parameter

	Default

	Description

	UPLOAD_ENABLED

	False

	Indicates whether thumbor should enable File uploads

	UPLOAD_PUT_ALLOWED

	False

	Indicates whether image overwrite should be allowed

	UPLOAD_DELETE_ALLOWED

	False

	Indicates whether image deletion should be allowed

	UPLOAD_PHOTO_STORAGE

	thumbor.storages.file_storage

	The type of storage to store uploaded images with

	UPLOAD_DEFAULT_FILENAME

	image

	Default filename for image uploaded

	UPLOAD_MAX_SIZE

	0

	Max size in Kb for images uploaded to thumbor

	MIN_WIDTH

	1

	Min width in pixels for images uploaded

	MIN_HEIGHT

	1

	Min height in pixels for images uploaded

Thumbor comes with the /image REST end-point to upload disabled by
default. In order to enable it, just set the UPLOAD_ENABLED
configuration in your thumbor.conf file to True.

Thumbor will then use the storage specified in the
UPLOAD_PHOTO_STORAGE configuration to save your images. You can use
an existing storage (filesystem, redis, mongo, hbase…) or
create your own storage if needed .

You can manage image putting and deletions simply set the configuration
parameters UPLOAD_PUT_ALLOWED and UPLOAD_DELETE_ALLOWED to
True. This parameters are set to False by default for security
reasons.

Finally the upload constraints (max size, image width and height) will
be controlled by UPLOAD_MAX_SIZE, MIN_WIDTH and MIN_HEIGHT
parameters.

API Usage

The Thumbor /image REST end-point supports the commons HTTP
methods [http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol] :

	POST : to upload a new image

	GET : to display an image uploaded

	PUT : to replace an image uploaded by another preserving the URI

	DELETE : to remove an image uploaded from storage

By default, PUT and DELETE methods are disabled as explained
above. This is done to tighten thumbor’s security.

Posting

Posting is the only method allowed by default when you activate the
upload module. It allows new images to be sent to Thumbor.

	In order to upload a new image, you have two choices:
	
	send an HTTP POST to the /image end-point with the image as payload (REST style)

	send an HTTP POST to the /image end-point with a multi-part form with a file field called media (Form style).

In the REST style mode you may add an optional Slug header to define
the image filename, which is useful for SEO reasons. Not specifying a
Slug causes the server to use the default filename for the image
(UPLOAD_DEFAULT_FILENAME parameter) .

The HTTP response will return a Location header pointing on the
uploaded image. The URI presented in Location header may be used to
update or delete the image uploaded (see below).

For examples, see the Upload an image via the REST API or Upload an image via a form sections.

 HTTP status code

The status code returned will be :

	201 Created (success)

	415 Unsupported Media Type (image type is not allowed)

	412 Precondition Failed (image is too small or the file is not an
image)

Putting

Putting is a little more dangerous if you don’t have strict control of
who can access the /image end-point. This is because whatever is
sent using this method gets saved to storage, overwriting the previous
entry.

In order to replace an existing image, all you have to do is send an
HTTP PUT request to the /image end-point with the new image
content as payload. The new image will replace the original image
preserving the URI.

As for the POST method you may add an optional Slug header to
define the image filename.

The HTTP response will return a Location header pointing on the
modified image. The URI presents in Location header may be used to
update again the image or delete it.

For an example see the Modifying an image section.

HTTP status code

The status code returned will be :

	204 No Content (success)

	405 Method Not Allowed (if thumbor’s configuration disallows putting
images)

	415 Unsupported Media Type (image type is not allowed)

	412 Precondition Failed (image is too small or file is not an image)

Deleting

Deleting can be very dangerous, thus is disabled by default.

If you do enable it, in order to delete an image, all you have to do is
send an HTTP DELETE request to the /image end-point.

For an example, see the Deleting an image section.

HTTP status code

	204 No Content (success)

	404 Not Found (image doesn’t exists)

	405 Method Not Allowed (if thumbor’s configuration disallows deleting
images)

Example

Assuming the thumbor server is located at : http://thumbor-server

Upload an image via the REST API

When using the /image REST end-point to upload your image via the
REST API :

curl -i -H "Content-Type: image/jpeg" -H "Slug: photo.jpg"
 -XPOST http://thumbor-server/image --data-binary "@tests/fixtures/images/20x20.jpg"

the HTTP POST request was send to the server :

POST /image
Content-Type: image/jpeg
Content-Length: 822
Slug : photo.jpg

and the Thumbor server should return:

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Location: /image/05b2eda857314e559630c6f3334d818d/photo.jpg
Server: TornadoServer/2.1.1

The image is created at
http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/photo.jpg.
It can be retrieved, modified or deleted via this URI.

The optional Slug HTTP header specifies the filename to use for the
image uploaded.

Upload an image via a form

When using the /image REST end-point to upload your images via a
form, the user is free to choose the filename of the image via the
filename field :

curl -i -XPOST http://thumbor-server/image
 -F "media=@tests/fixtures/images/20x20.jpg;type=image/jpeg;filename=croco.jpg"

the HTTP POST request was send to the server :

POST /image
Content-Type: multipart/form-data; boundary=----------------------------11df125d8b12
Content-Length: 822

and the Thumbor server should return:

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Location: /image/05b2eda857314e559630c6f3334d818d/croco.jpg

The image is created at
http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/croco.jpg.
It can be retrieve, modify or delete via this URI using the REST API.

Modifying an image

To replace the previously uploaded image by another we use:

curl -i -H "Content-Type: image/jpeg" -H "Slug: modified_image.jpg"
 -XPUT http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/photo.jpg --data-binary "@tests/fixtures/images/20x20.jpg"

the HTTP PUT request was send to the server :

PUT /image/05b2eda857314e559630c6f3334d818d/photo.jpg
Content-Type: image/jpeg
Content-Length: 822
Slug : modified_image.jpg

and the Thumbor server should return:

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Location: /image/05b2eda857314e559630c6f3334d818d/modified_image.jpg
Server: TornadoServer/2.1.1

Deleting an image

Finally to delete the uploaded image we use:

curl -i -XDELETE http://thumbor-server/image/05b2eda857314e559630c6f3334d818d/modified_image.jpg

the HTTP DELETE request was send to the server :

DELETE /image/05b2eda857314e559630c6f3334d818d/modified_image.jpg

and the Thumbor server should return:

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Server: TornadoServer/2.1.1

Posting, Putting and Deleting

thumbor original photo uploading end-point supports three different
http
verbs [http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol]:
put, post and delete.

By default, put and delete are disabled. This is done to tighten
thumbor’s security. If you wish to enable them, please refer to the
How to upload Images page.

Posting

Posting is the only allowed by default method. It allows new images to
be sent to thumbor. If the same image is sent again, thumbor will raise
an exception.

This is done so users can’t overwrite images with other images, possibly
defacing your website.

In order to post a new image, all you have to do is send a multi-part
form with a file field called media and action of
http://{thumbor-server}/image and method of POST.

HTTP status code

	201 Created (success)

	409 Conflict (image already exists)

	412 Precondition Failed (image is too small or the file is not an
image)

Putting

Putting is a little more dangerous if you don’t have strict control of
who can access the /image route. This is because whatever is sent
using this method gets saved to storage, overwriting the previous entry.

In order to put a new image, all you have to do is send a multi-part
form with a file field called media and action of
http://{thumbor-server}/image and method of PUT.

HTTP status code

	201 Created (success)

	405 Method Not Allowed (if thumbor’s configuration disallows putting
images)

	412 Precondition Failed (image is too small or file is not an image)

Deleting

Deleting can be very dangerous, thus is disabled by default.

If you do enable it, in order to delete an image, all you have to do is
send a request to http://{thumbor-server}/image with a method of
DELETE and a field called file_path with the same path that was
used when uploading the image.

HTTP status code

	200 OK (success)

	405 Method Not Allowed (if thumbor’s configuration disallows deleting
images)

Creating my own Storage

In order to create your own original photo storage, all you have to do
is implement a class called Storage that inherits from
thumbor.storages.BaseStorage and has three simple methods: put,
exists and remove.

put is the method that actually stores the image somewhere. It could
send the picture to a remote storage like Amazon’s S3 or it could just
save the picture to the local filesystem. This method should have a
signature of put(path, bytes) and it should return the file path
(for future reference).

exists should return if the file in the given path already exists.
This method should have a signature of exists(path) and it should
return a boolean stating if the file exists.

remove should just remove the file in the given path. This method
must be idempotent, meaning that if the file has already been removed
(or does not exist for that matter) it shouldn’t do anything on
subsequent calls. This method should have a signature of
remove(path) and does not need to return anything.

After your class has been created (and hopefully tested, lol), you just
need to modify the ORIGINAL_PHOTO_STORAGE configuration option in
your thumbor.conf file to the module where you implemented your
Storage class. Please note that thumbor must be able to import this
module, so it should be somewhere in the PYTHONPATH you started thumbor
with.

Contributors & Users

	The team

	Whos using it

	Hacking on Thumbor

	Licensing

The team

These are the people that created, that work or worked in thumbor across
the releases:

Founders / Committers

	@heynemann [https://github.com/heynemann/] - Founder and active
committer

	@cezarsa [https://github.com/cezarsa/] - Committer

	@fabiomcosta [https://github.com/fabiomcosta/] - Founder and committer

Contributors

Contributors can be found in the Contributors
page [https://github.com/thumbor/thumbor/graphs/contributors].

Whos using it

[image: _images/logo-globocom.png]
http://www.globo.com - globo.com uses thumbor to generate dynamic images
through all products across the portal. Around 15 billion images served
per month.

[image: _images/properati-logo.png]
http://www.properati.com.ar/ - properati is also using thumbor to
generate several different sizes of their properties photos, using smart
cropping to get the best possible thumbnails.

Thumbor made our lives better.

At Properati.com.ar we care a lot about user experience.

When our design team came up with a beautiful design that included
thumbnails of 5 different sizes and specific cropping specs, instead
of enhancing our home-made, simple thumbnail-generator process we
moved to Thumbor and now, we cannot live without it.

Thanks a lot!

[image: _images/yipit.png]
http://yipit.com/ - yipit now uses thumbor behind the CloudFront
CDN [http://en.wikipedia.org/wiki/Content_delivery_network] at
Amazon. Their detailed experience with setting up thumbor can be seen at
this blog
post [http://tech.yipit.com/2013/01/03/how-yipit-scales-thumbnailing-with-thumbor-and-cloudfront/].

Thumbor allows Yipit to iterate quickly on new designs without
having to worry about introducing new image sizes.

On demand image generation was just too slow when integrated into
our application servers, but Thumbor makes it possible.

No more going through old images and creating new thumbnails before
we can roll out a new design!

Our initial Thumbor installation took less than an hour to set up,
and we haven’t had to spend much time thinking about it since then.

Zach Smith - CTO

[image: _images/oony.png]
http://oony.com is using thumbor to serve thumbnail images behind
Amazon’s Cloudfront CDN.

We’ve previously adapted the size of the thumbnails to what was
required by our design team, forcing us to have many different
versions of the images we have on our site.

With Thumbor we don’t have to worry about this anymore, and we can
quickly iterate and make changes to our layouts serving the optimal
image format each time.

Thumbor is awesome!

[image: _images/viadeo.png]
The Viadeo Group owns and operates professional social networks
around the world with a total membership base of over 55 million
professionals. Professionals use the networks to enhance their
career prospects, discover business opportunities and build
relationships with new contacts as well as to create effective
online identities.

With headquarters based in Paris, the Group currently has over 450
staff with offices and teams located in 10 countries.

Viadeo [http://viadeo.com] is using Thumbor more and more. We
used to have some home-made Java code to deliver images from
http://www.viadeo.com. This code is still alive for some parts of
our site.

Since the end of summer 2013, Thumbor is a reality at Viadeo. First
via IOS application for member’s profile photos, then our news
platform uses it for new parts of the site, taking more and more
place and also some Android applications.

Thumbor helps us in migrating and decoupling applications from our
storage backend. We were able to move from NFS (centralized and very
sensitive to high loads) to a distributed storage like HBase, using
a hbase storage
plugin [https://github.com/dhardy92/thumbor_hbase]. Using the
same technique of lazy loading (via Storage cache in thumbor) we can
imagine changing our image’s storage at our convenience should
apache HBase start to show deficiencies. This is really comfortable
for Ops.

[image: threadless]

TypeTees [https://www.threadless.com/typetees] is an easy-to-use
iPhone app that lets you speak your mind by putting your super witty
slogan into an original tee and order it immediately.

We use Thumbor to generate mobile thumbnails directly from the same
large images that are sent to the t-shirt garment printer. It
requires dealing with masks, feature trimming, transparent images,
and replacing backgrounds to give users an easy-to-see preview of
the t-shirt.

Thumbor made this possible and simple without having to write an
image processor from scrap.

TypeTees was developed by www.prolificinteractive.com and you can
learn more about how thumbor helped them at their engineering blog
post [http://prolificinteractive.com/blog/2014/05/29/threadless-typetees-neat-and-easy-thumbnails-using-thumbor-and-php/].

[image: just watch]

Just Watch [http://www.justwatch.com]

At JustWatch, we’re big fans of Thumbor as well.

We’re serving it behind a CloudFront custom origin like many others, and features like WebP and smart cropping saved us huge amounts of time and bandwidth.

[image: Ridelink]

Ridelink [https://ridelink.com/]

RideLink uses Thumbor to provide the most appropriate, and optimized, image for the platform our customer is using.

Setting it up and enhancing it was an easy task thanks to the good documentation and the available plugins.

Thanks to the team behind Thumbor for making our lifes easier!

Cheers!
Erico Andrei - CTO

[image: HeyCar]

HeyCar [https://hey.car/]

HeyCar is using Thumbor to optimize images for each customers device, taking network and screen sizes into account.

Our Thumbor instances run on our Kubernetes Cluster, served behind a CloudFront instance for caching purposes.

Huge Thanks to all Thumbor Contributors!

Marcelo Boeira - Software Engineer

[image: Modalova]

Modalova [https://www.modalova.fr/]

Modalova is an online shopping website dedicated to fashion for men and women.

We use Thumbor to generate product thumbnails on our website Modalova, on the grid and also on the Product Pages.

We serve more than 2,000,000 products to our customers everyday and work with more than 10,000 brands on the fashion Market.

Our Thumbor instances are running on Heroku, behind the CDN Cloudflare.

Thanks again for this wonderful project,

Cheers!

Gabriel Kaam - CEO & Founder

How to add my site or product here

If you are using thumbor and your site or product is not listed here,
please create an issue and we’ll include your logo and a short
description on how you are using it here.

Hacking on Thumbor

So you want to contribute with thumbor? Welcome onboard!

There are a few things you’ll need in order to properly start hacking on
it.

First step is to fork it [http://help.github.com/fork-a-repo/] and
create your own clone of thumbor.

Dependencies

We seriously advise you to use
virtualenv [http://pypi.python.org/pypi/virtualenv] since it will
keep your environment clean of thumbor’s dependencies and you can choose
when to “turn them on”.

You’ll also need python >= 3.8 and python poetry [https://python-poetry.org/].

Installing poetry should be as easy as pip install poetry, but you can find more about it in their website.

Other than that, you’ll also need redis-server <https://redis.io>` installed (for queued detector unit tests).

Initializing the Environment

Once you’ve created your virtualenv, and installed poetry, make sure you can use poetry:

$ poetry --version
Poetry version 1.0.3

You should see something similar. After that we just need to download all python packages with:

$ make setup

Running the Tests

Running the tests is as easy as:

$ make test

You should see the results of running your tests after an instant.

If you are experiencing “Too many open files” errors while running the
tests, try increasing the number of open files per process, by running
this command:

$ ulimit -S -n 2048

Read
http://superuser.com/questions/433746/is-there-a-fix-for-the-too-many-open-files-in-system-error-on-os-x-10-7-1
for more info on this.

Linting your code

Please ensure that your editor is configured to use black [https://github.com/psf/black], flake8 [https://flake8.pycqa.org/en/latest/] and pylint [https://www.pylint.org/].

Even if that’s the case, don’t forget to run make flake pylint before commiting and fixing any issues you find. That way you won’t get a request for doing so in your PR.

Pull Requests

After hacking and testing your contribution, it is time to make a pull
request. Make sure that your code is already integrated with the master
branch of thumbor before asking for a pull request.

To add thumbor as a valid remote for your repository:

$ git remote add thumbor git://github.com/thumbor/thumbor.git

To merge thumbor’s master with your fork:

$ git pull thumbor master

If there was anything to merge, just run your tests again. If they pass,
send a pull request [http://help.github.com/send-pull-requests/].

Introducing a new Dependency

If we introduce a new dependency, the testing docker images need to be updated.

If the new dependency requires changes to the docker image, make sure to update the TestDockerfile36, TestDockerfile37, TestDockerfile38 and TestDockerfile39 files.

Then build and publish with:

make test-docker-build test-docker-publish

Remember that you must be logged in with your docker hub account and you must be part of the thumbororg <https://hub.docker.com/repository/docker/thumbororg/thumbor-test> team of administrators.

Running tests in docker

If you do not wish to configure your environment with thumbor’s dependencies, you can use our docker image to run tests with:

make test-docker-run

Or if you want to run a specific python version with your tests:

make test-docker-39-run

Just replace ‘39’ with the python version you want: 36, 37, 38 or 39.

Licensing

Thumbor is licensed under the MIT License:

The MIT License

Copyright (c) 2011 globo.com thumbor@googlegroups.com

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 piexif	

Index

 M
 | P

M

 	
 	
 module

 	piexif

P

 	
 	
 piexif

 	module

 _images/dice_transparent_background.png

_images/eagle_after_sharpen.jpg
3

_images/dice_lightblue_background.png

_images/dice_red_background.png

_images/eagle_before_sharpen.jpg

_images/example.jpg

_static/minus.png

_static/file.png

_static/plus.png

_images/yipit.png
yipit

_images/dice_blue_background.png

_images/dice_blur_background.png

_images/dc95f6db1afb7ddebdeb3437a5a487e0d278069d.png
ridelink

_images/dice_auto_background.png

nav.xhtml

 Table of Contents

 		
 Welcome to Thumbor’s documentation!

 		
 Installing

 		
 Stable

 		
 Ubuntu/Debian using aptitude (apt-get)

 		
 From the source of a stable release

 		
 From the latest version of the source

 		
 Getting Started

 		
 Problems installing thumbor locally

 		
 Changing its size

 		
 Flipping the image

 		
 Filters

 		
 What now?

 		
 Usage

 		
 Image Endpoint

 		
 Trim

 		
 Manual Crop

 		
 Fit in

 		
 Image Size

 		
 Horizontal Align

 		
 Vertical Align

 		
 Smart Cropping

 		
 Filters

 		
 Image URI

 		
 Metadata Endpoint

 		
 Imaging

 		
 Crop and Resize Algorithms

 		
 Cropping the image

 		
 Resizing the Image

 		
 Flipping the Image

 		
 Filters

 		
 How Filters Work

 		
 Available Filters

 		
 Detectors

 		
 Enabling detectors

 		
 Detection Algorithms

 		
 Available detectors

 		
 Lazy Detection

 		
 Image loader

 		
 Pre-packaged loaders

 		
 Image storage

 		
 Pre-Packaged Storages

 		
 Result Storage

 		
 Pre-packaged result storages

 		
 Optimizers

 		
 Built-in Optimizers

 		
 Customizing Thumbor

 		
 Custom Storages

 		
 Custom Image Loaders

 		
 Custom Result Storages

 		
 Custom Filters

 		
 Available Filter Argument Types

 		
 Custom Engines

 		
 Custom detection

 		
 Creating a Custom Detector

 		
 Custom Image Optimizers

 		
 Custom Error Handlers

 		
 Custom Handler Lists

 		
 Built-in Handler Lists

 		
 Writing a new Handler List

 		
 Plugins

 		
 Storages

 		
 Metrics

 		
 Extensions

 		
 Engines

 		
 Libraries

 		
 Available Libraries

 		
 Implementing a library

 		
 Library Tests - Generating HMAC of the URLs

 		
 Library Tests - Scenarios

 		
 More Information

 		
 Administration

 		
 Configuration

 		
 Override config through environment variable

 		
 Extensibility Section

 		
 Filters Section

 		
 Metadata Section

 		
 Face and Feature Detection Section

 		
 Imaging Section

 		
 Queueing - Redis Single Node

 		
 Queueing - Redis Sentinel

 		
 Queueing - Amazon SQS

 		
 Security Section

 		
 Loader Options Section

 		
 Storage Options Section

 		
 File Storage Section

 		
 Result Storage Section

 		
 Healthcheck

 		
 Logging

 		
 Error Handling

 		
 Error Handling - Sentry

 		
 Upload

 		
 Example of Configuration File

 		
 Automated Error Handling

 		
 Enabling Custom Error Handling

 		
 Sentry - thumbor.error_handlers.sentry

 		
 Hosting

 		
 Development Environment

 		
 Production Environment

 		
 Thumbor in the Cloud

 		
 Thumbor on OpenShift

 		
 Thumbor behind CloudFront

 		
 Logging

 		
 Configuring log format

 		
 Running thumbor server

 		
 -i or –ip

 		
 -p or –port

 		
 -c or –conf

 		
 -k or –keyfile

 		
 -l or –log-level

 		
 –processes

 		
 -a or –app

 		
 Image Metadata

 		
 Reading and writing Metadata

 		
 piexif API reference

 		
 Security

 		
 URL Tampering

 		
 Loading Images over HTTPS

 		
 Libraries

 		
 Upload

 		
 How to upload Images

 		
 Configuration

 		
 API Usage

 		
 Example

 		
 Posting, Putting and Deleting

 		
 Posting

 		
 Putting

 		
 Deleting

 		
 Creating my own Storage

 		
 Contributors & Users

 		
 The team

 		
 Founders / Committers

 		
 Contributors

 		
 Whos using it

 		
 How to add my site or product here

 		
 Hacking on Thumbor

 		
 Dependencies

 		
 Initializing the Environment

 		
 Running the Tests

 		
 Linting your code

 		
 Pull Requests

 		
 Introducing a new Dependency

 		
 Running tests in docker

 		
 Licensing

_images/tom_before_brightness.jpg

_images/tom_after_watermark.jpg

_images/tom_watermark_resized_none_height.jpg

_images/tom_watermark_relative.jpg

_images/tom_watermark_resized_width_height.jpg

_images/tom_watermark_resized_width.jpg

_images/viadeo.png
viaded'

_images/vertical-fit-in.png

_images/tom_after_rgb.jpg

_images/tom_after_quality.jpg

_images/tom_after_rotate.jpg

_images/fillblur.jpg
f &

_images/fillred.jpg

_images/filllightblue.jpg

_images/horizontal-fit-in.png

_images/focal-points.png
TOPRIGHT

N rerr) mooLr |
WDDLEREFT RIGHT

somrow sorrow
o S
N —

_images/faces_found_example.png
center
of mass

_images/face_detection_original.jpg

_images/feature_detection_original.jpg
- 2

_images/feature_detection.jpg

_images/fillblue.jpg

_images/fillauto.jpg

_images/extract2.jpg

_images/extract1.jpg

_images/face_detection_alt.jpg
28

& B .
iun, AR

_images/extract3.jpg

_images/546px-Turkish_Van_Cat.jpg

_images/772d6f4fe484388b3f7be3315ee8677dbf16d949.jpg
hey

_images/tom_after_grayscale.jpg

_images/tom_after_negative_contrast.jpg

_images/tom_after_max_bytes.jpg

_images/tom_after_noise.jpg

_images/tom_after_negative_saturation.png

_images/tom_after_positive_saturation.png

_images/tom_after_positive_contrast.jpg

_images/thumbor-sentry-get-dsn.png
Settings.
Notifications
Tags

API Keys

All Platforms
JavaScript
PHP

Ruby

Configuring Python
Python | Djengo Flask

Start by Installing raven-python:
pip install raven
Greate an instance of the client:

from raven import Client

client = Client('http://5a63d58ae7b94f1dab3dee740b301d6a: 73eead5d3e86492390973087e8 21988l ocal host:9000/2")

@ roven-python

_images/stretch_after.jpg
|

-
~'s
e

%

_images/tom_after_equalize.jpg

_images/tom_after_brightness.jpg

_images/before_convolution.png

_images/blur_after.jpg

_images/animated.gif

_images/animated_static.gif

_images/cropped_image.png

_images/blur_before.jpg

_images/crop-width-height.png
N

_images/properati-logo.png
PROPERATI

_images/oony.png

_images/rounded1.jpg

_images/proportion.jpg

_images/rounded3.png

_images/rounded2.jpg

_images/logo-thumbor.png
thumbor.

_images/logo-globocom.png
com

_images/man_after_sharpen.png

_images/logo.png
modalova

_images/man_before_sharpen.png

_images/after_convolution1.png

_images/after_convolution2.png

_images/after-focal.jpg

